代码拉取完成,页面将自动刷新
from ssd import SSD
from PIL import Image
from utils.box_utils import letterbox_image,ssd_correct_boxes
from torch.autograd import Variable
import torch
import numpy as np
import os
MEANS = (104, 117, 123)
class mAP_SSD(SSD):
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self,image_id,image):
self.confidence = 0.05
f = open("./input/detection-results/"+image_id+".txt","w")
image_shape = np.array(np.shape(image)[0:2])
crop_img = np.array(letterbox_image(image, (self.model_image_size[0],self.model_image_size[1])))
photo = np.array(crop_img,dtype = np.float64)
# 图片预处理,归一化
with torch.no_grad():
photo = Variable(torch.from_numpy(np.expand_dims(np.transpose(crop_img-MEANS,(2,0,1)),0)).type(torch.FloatTensor))
if self.cuda:
photo = photo.cuda()
preds = self.net(photo)
top_conf = []
top_label = []
top_bboxes = []
for i in range(preds.size(1)):
j = 0
while preds[0, i, j, 0] >= self.confidence:
score = preds[0, i, j, 0]
label_name = self.class_names[i-1]
pt = (preds[0, i, j, 1:]).detach().numpy()
coords = [pt[0], pt[1], pt[2], pt[3]]
top_conf.append(score)
top_label.append(label_name)
top_bboxes.append(coords)
j = j + 1
# 将预测结果进行解码
if len(top_conf)<=0:
return image
top_conf = np.array(top_conf)
top_label = np.array(top_label)
top_bboxes = np.array(top_bboxes)
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
# 去掉灰条
boxes = ssd_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
for i, c in enumerate(top_label):
predicted_class = c
score = str(float(top_conf[i]))
top, left, bottom, right = boxes[i]
f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
f.close()
return
ssd = mAP_SSD()
image_ids = open('VOCdevkit/VOC2007/ImageSets/Main/test.txt').read().strip().split()
if not os.path.exists("./input"):
os.makedirs("./input")
if not os.path.exists("./input/detection-results"):
os.makedirs("./input/detection-results")
if not os.path.exists("./input/images-optional"):
os.makedirs("./input/images-optional")
for image_id in image_ids:
image_path = "./VOCdevkit/VOC2007/JPEGImages/"+image_id+".jpg"
image = Image.open(image_path)
image.save("./input/images-optional/"+image_id+".jpg")
ssd.detect_image(image_id,image)
print(image_id," done!")
print("Conversion completed!")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。