1 Star 0 Fork 32

xu_ping/zlib

forked from src-openEuler/zlib 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
zlib-1.2.11-SIMD.patch 24.91 KB
一键复制 编辑 原始数据 按行查看 历史
Noah 提交于 2020-09-14 16:36 . add zlib-1.2.11-SIMD.patch
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
diff --git a/deflate.c b/deflate.c
index f30f71b..c018064 100644
--- a/deflate.c
+++ b/deflate.c
@@ -184,8 +184,16 @@ local const config configuration_table[10] = {
* characters, so that a running hash key can be computed from the previous
* key instead of complete recalculation each time.
*/
-#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
+#if defined(HASH_ARMV8_CRC32)
+#include <arm_acle.h>
+#define UPDATE_HASH_CRC_INTERNAL(s, h, c) \
+ (h = __crc32w(0, (c) & 0xFFFFFF) & ((deflate_state *)s)->hash_mask)
+#define UPDATE_HASH(s, h, c) \
+ UPDATE_HASH_CRC_INTERNAL(s, h, *(unsigned *)((uintptr_t)(&c) - (MIN_MATCH-1)))
+#else
+#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
+#endif
/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
@@ -1198,14 +1247,15 @@ local unsigned read_buf(strm, buf, size)
strm->avail_in -= len;
zmemcpy(buf, strm->next_in, len);
- if (strm->state->wrap == 1) {
- strm->adler = adler32(strm->adler, buf, len);
- }
#ifdef GZIP
- else if (strm->state->wrap == 2) {
+ if (strm->state->wrap == 2) { /* use crc32 algo */
strm->adler = crc32(strm->adler, buf, len);
- }
+ } else
#endif
+ if (strm->state->wrap == 1) {
+ strm->adler = adler32(strm->adler, buf, len);
+ }
+
strm->next_in += len;
strm->total_in += len;
diff --git a/inffast.c b/inffast.c
index 4bfc995..2084739 100644
--- a/inffast.c
+++ b/inffast.c
@@ -81,6 +81,9 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
unsigned char FAR *out; /* local strm->next_out */
unsigned char FAR *beg; /* inflate()'s initial strm->next_out */
unsigned char FAR *end; /* while out < end, enough space available */
+#if defined(INFLATE_CHUNK_SIMD_NEON)
+ unsigned char FAR *limit; /* safety limit for chunky copies */
+#endif
#ifdef INFLATE_STRICT
unsigned dmax; /* maximum distance from zlib header */
#endif
@@ -113,7 +116,12 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
#endif
wsize = state->wsize;
whave = state->whave;
+#if defined(INFLATE_CHUNK_SIMD_NEON)
+ limit = out + strm->avail_out;
+ wnext = (state->wnext == 0 && whave >= wsize) ? wsize : state->wnext;
+#else
wnext = state->wnext;
+#endif
window = state->window;
hold = state->hold;
bits = state->bits;
@@ -221,6 +229,45 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
#endif
}
from = window;
+#if defined(INFLATE_CHUNK_SIMD_NEON)
+ if (wnext >= op) { /* contiguous in window */
+ from += wnext - op;
+ }
+ else { /* wrap around window */
+ op -= wnext;
+ from += wsize - op;
+ if (op < len) { /* some from end of window */
+ len -= op;
+ out = chunkcopy_safe(out, from, op, limit);
+ from = window; /* more from start of window */
+ op = wnext;
+ /* This (rare) case can create a situation where
+ the first chunkcopy below must be checked.
+ */
+ }
+ }
+ if (op < len) { /* still need some from output */
+ out = chunkcopy_safe(out, from, op, limit);
+ len -= op;
+ /* When dist is small the amount of data that can be
+ copied from the window is also small, and progress
+ towards the dangerous end of the output buffer is
+ also small. This means that for trivial memsets and
+ for chunkunroll_relaxed() a safety check is
+ unnecessary. However, these conditions may not be
+ entered at all, and in that case it's possible that
+ the main copy is near the end.
+ */
+ out = chunkunroll_relaxed(out, &dist, &len);
+ out = chunkcopy_safe(out, out - dist, len, limit);
+ }
+ else {
+ /* from points to window, so there is no risk of
+ overlapping pointers requiring memset-like behaviour
+ */
+ out = chunkcopy_safe(out, from, len, limit);
+ }
+#else
if (wnext == 0) { /* very common case */
from += wsize - op;
if (op < len) { /* some from window */
@@ -271,8 +318,18 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
if (len > 1)
*out++ = *from++;
}
+#endif
}
- else {
+ else {
+#if defined(INFLATE_CHUNK_SIMD_NEON)
+ /* Whole reference is in range of current output. No
+ range checks are necessary because we start with room
+ for at least 258 bytes of output, so unroll and roundoff
+ operations can write beyond `out+len` so long as they
+ stay within 258 bytes of `out`.
+ */
+ out = chunkcopy_lapped_relaxed(out, dist, len);
+#else
from = out - dist; /* copy direct from output */
do { /* minimum length is three */
*out++ = *from++;
@@ -284,7 +341,8 @@ unsigned start; /* inflate()'s starting value for strm->avail_out */
*out++ = *from++;
if (len > 1)
*out++ = *from++;
- }
+ }
+#endif
}
}
else if ((op & 64) == 0) { /* 2nd level distance code */
diff --git a/inffast.h b/inffast.h
index b8da8bb..0def2e3 100644
--- a/inffast.h
+++ b/inffast.h
@@ -32,4 +32,374 @@
subject to change. Applications should only use zlib.h.
*/
+/*
+ * The chunk-copy code below deals with writing the decoded DEFLATE data to
+ * the output with SIMD methods to increase decode speed. Reading the input
+ * to the DEFLATE decoder with a wide, SIMD method can also increase decode
+ * speed. This option is supported on little endian machines, and reads the
+ * input data in 64-bit (8 byte) chunks.
+ */
+
void ZLIB_INTERNAL inflate_fast OF((z_streamp strm, unsigned start));
+
+#if defined(INFLATE_CHUNK_SIMD_NEON)
+
+#include <stdint.h>
+#include "zutil.h"
+#include <arm_neon.h>
+
+typedef uint8x16_t z_vec128i_t;
+
+#define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
+
+#if __STDC_VERSION__ >= 199901L
+#define Z_RESTRICT restrict
+#else
+#define Z_RESTRICT
+#endif
+
+#if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
+#define Z_BUILTIN_MEMCPY __builtin_memcpy
+#else
+#define Z_BUILTIN_MEMCPY zmemcpy
+#endif
+
+/*
+ * chunk copy type: the z_vec128i_t type size should be exactly 128-bits
+ * and equal to CHUNKCOPY_CHUNK_SIZE.
+ */
+#define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
+
+Z_STATIC_ASSERT(vector_128_bits_wide,
+ CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
+
+/*
+ * Ask the compiler to perform a wide, unaligned load with a machinevst1q_u8
+ * instruction appropriate for the z_vec128i_t type.
+ */
+static inline z_vec128i_t loadchunk(
+ const unsigned char FAR* s)
+{
+ z_vec128i_t v;
+ Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
+ return v;
+}
+
+/*
+ * Ask the compiler to perform a wide, unaligned store with a machine
+ * instruction appropriate for the z_vec128i_t type.
+ */
+static inline void storechunk(
+ unsigned char FAR* d,
+ const z_vec128i_t v)
+{
+ Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
+}
+
+/*
+ * Perform a memcpy-like operation, assuming that length is non-zero and that
+ * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
+ * the length is shorter than this.
+ *
+ * It also guarantees that it will properly unroll the data if the distance
+ * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
+ * in chunkcopy_relaxed().
+ *
+ * Aside from better memory bus utilisation, this means that short copies
+ * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
+ * without iteration, which will hopefully make the branch prediction more
+ * reliable.
+ */
+static inline unsigned char FAR* chunkcopy_core(
+ unsigned char FAR* out,
+ const unsigned char FAR* from,
+ unsigned len)
+{
+ const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
+ storechunk(out, loadchunk(from));
+ out += bump;
+ from += bump;
+ len /= CHUNKCOPY_CHUNK_SIZE;
+ while (len-- > 0) {
+ storechunk(out, loadchunk(from));
+ out += CHUNKCOPY_CHUNK_SIZE;
+ from += CHUNKCOPY_CHUNK_SIZE;
+ }
+ return out;
+}
+
+/*
+ * Like chunkcopy_core(), but avoid writing beyond of legal output.
+ *
+ * Accepts an additional pointer to the end of safe output. A generic safe
+ * copy would use (out + len), but it's normally the case that the end of the
+ * output buffer is beyond the end of the current copy, and this can still be
+ * exploited.
+ */
+static inline unsigned char FAR* chunkcopy_core_safe(
+ unsigned char FAR* out,
+ const unsigned char FAR* from,
+ unsigned len,
+ unsigned char FAR* limit)
+{
+ Assert(out + len <= limit, "chunk copy exceeds safety limit");
+ if ((limit - out) < (ptrdiff_t) CHUNKCOPY_CHUNK_SIZE) {
+ const unsigned char FAR* Z_RESTRICT rfrom = from;
+ if (len & 8) {
+ Z_BUILTIN_MEMCPY(out, rfrom, 8);
+ out += 8;
+ rfrom += 8;
+ }
+ if (len & 4) {
+ Z_BUILTIN_MEMCPY(out, rfrom, 4);
+ out += 4;
+ rfrom += 4;
+ }
+ if (len & 2) {
+ Z_BUILTIN_MEMCPY(out, rfrom, 2);
+ out += 2;
+ rfrom += 2;
+ }
+ if (len & 1) {
+ *out++ = *rfrom++;
+ }
+ return out;
+ }
+ return chunkcopy_core(out, from, len);
+}
+
+/*
+ * Perform short copies until distance can be rewritten as being at least
+ * CHUNKCOPY_CHUNK_SIZE.
+ *
+ * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE
+ * bytes of output even if the copy is shorter than this. This assumption
+ * holds within zlib inflate_fast(), which starts every iteration with at
+ * least 258 bytes of output space available (258 being the maximum length
+ * output from a single token; see inffast.c).
+ */
+static inline unsigned char FAR* chunkunroll_relaxed(
+ unsigned char FAR* out,
+ unsigned FAR* dist,
+ unsigned FAR* len)
+{
+ const unsigned char FAR* from = out - *dist;
+ while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
+ storechunk(out, loadchunk(from));
+ out += *dist;
+ *len -= *dist;
+ *dist += *dist;
+ }
+ return out;
+}
+
+/*
+ * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
+ * every 64-bit component of the 128-bit result (64-bit int splat).
+ */
+static inline z_vec128i_t v_load64_dup(const void* src)
+{
+ return vcombine_u8(vld1_u8(src), vld1_u8(src));
+}
+
+/*
+ * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
+ * every 32-bit component of the 128-bit result (32-bit int splat).
+ */
+static inline z_vec128i_t v_load32_dup(const void* src)
+{
+ int32_t i32;
+ Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
+ return vreinterpretq_u8_s32(vdupq_n_s32(i32));
+}
+
+/*
+ * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
+ * every 16-bit component of the 128-bit result (16-bit int splat).
+ */
+static inline z_vec128i_t v_load16_dup(const void* src)
+{
+ int16_t i16;
+ Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
+ return vreinterpretq_u8_s16(vdupq_n_s16(i16));
+}
+
+/*
+ * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
+ * component of the 128-bit result (8-bit int splat).
+ */
+static inline z_vec128i_t v_load8_dup(const void* src)
+{
+ return vld1q_dup_u8((const uint8_t*) src);
+}
+
+/*
+ * v_store_128(): store the 128-bit vec in a memory destination (that might
+ * not be 16-byte aligned) void* out.
+ */
+static inline void v_store_128(unsigned char* out, const z_vec128i_t vec)
+{
+ vst1q_u8(out, vec);
+}
+
+/*
+ * Perform an overlapping copy which behaves as a memset() operation, but
+ * supporting periods other than one, and assume that length is non-zero and
+ * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
+ * even if the length is shorter than this.
+ */
+static inline unsigned char FAR* chunkset_store_result(
+ unsigned len,
+ unsigned char FAR* out,
+ z_vec128i_t v)
+{
+ do {
+ v_store_128(out, v);
+ out += sizeof(v);
+ len -= sizeof(v);
+ } while (len > 0);
+ return out;
+}
+
+static inline unsigned char FAR* chunkset_core(unsigned char FAR* out, unsigned period, unsigned len)
+{
+ z_vec128i_t v;
+ const int bump = ((len - 1) % sizeof(v)) + 1;
+ switch (period) {
+ case 1:
+ v = v_load8_dup(out - 1);
+ v_store_128(out, v);
+ out += bump;
+ len -= bump;
+ while (len > 0) {
+ v_store_128(out, v);
+ out += sizeof(v);
+ len -= sizeof(v);
+ }
+ return out;
+ case 2:
+ v = v_load16_dup(out - 2);
+ v_store_128(out, v);
+ out += bump;
+ len -= bump;
+ if (len > 0) {
+ v = v_load16_dup(out - 2);
+ out = chunkset_store_result(len, out, v);
+ }
+ return out;
+ case 4:
+ v = v_load32_dup(out - 4);
+ v_store_128(out, v);
+ out += bump;
+ len -= bump;
+ if (len > 0) {
+ v = v_load32_dup(out - 4);
+ out = chunkset_store_result(len, out, v);
+ }
+ return out;
+ case 8:
+ v = v_load64_dup(out - 8);
+ v_store_128(out, v);
+ out += bump;
+ len -= bump;
+ if (len > 0) {
+ v = v_load64_dup(out - 8);
+ out = chunkset_store_result(len, out, v);
+ }
+ return out;
+ }
+ out = chunkunroll_relaxed(out, &period, &len);
+ return chunkcopy_core(out, out - period, len);
+}
+
+/*
+ * Perform a memcpy-like operation, but assume that length is non-zero and that
+ * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
+ * the length is shorter than this.
+ *
+ * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
+ * of overlapping buffers, regardless of the distance between the pointers.
+ * This is reflected in the `restrict`-qualified pointers, allowing the
+ * compiler to re-order loads and stores.
+ */
+static inline unsigned char FAR* chunkcopy_relaxed(
+ unsigned char FAR* Z_RESTRICT out,
+ const unsigned char FAR* Z_RESTRICT from,
+ unsigned len)
+{
+ return chunkcopy_core(out, from, len);
+}
+
+/*
+ * Like chunkcopy_relaxed(), but avoid writing beyond of legal output.
+ *
+ * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
+ * behaviour of overlapping buffers, regardless of the distance between the
+ * pointers. This is reflected in the `restrict`-qualified pointers, allowing
+ * the compiler to re-order loads and stores.
+ *
+ * Accepts an additional pointer to the end of safe output. A generic safe
+ * copy would use (out + len), but it's normally the case that the end of the
+ * output buffer is beyond the end of the current copy, and this can still be
+ * exploited.
+ */
+static inline unsigned char FAR* chunkcopy_safe(
+ unsigned char FAR* out,
+ const unsigned char FAR* Z_RESTRICT from,
+ unsigned len,
+ unsigned char FAR* limit)
+{
+ Assert(out + len <= limit, "chunk copy exceeds safety limit");
+ return chunkcopy_core_safe(out, from, len, limit);
+}
+
+/*
+ * Perform chunky copy within the same buffer, where the source and destination
+ * may potentially overlap.
+ *
+ * Assumes that len > 0 on entry, and that it's safe to write at least
+ * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
+ */
+static inline unsigned char FAR* chunkcopy_lapped_relaxed(
+ unsigned char FAR* out,
+ unsigned dist,
+ unsigned len)
+{
+ if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
+ return chunkset_core(out, dist, len);
+ }
+ return chunkcopy_core(out, out - dist, len);
+}
+
+/*
+ * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal
+ * output.
+ *
+ * Accepts an additional pointer to the end of safe output. A generic safe
+ * copy would use (out + len), but it's normally the case that the end of the
+ * output buffer is beyond the end of the current copy, and this can still be
+ * exploited.
+ */
+static inline unsigned char FAR* chunkcopy_lapped_safe(
+ unsigned char FAR* out,
+ unsigned dist,
+ unsigned len,
+ unsigned char FAR* limit)
+{
+ Assert(out + len <= limit, "chunk copy exceeds safety limit");
+ if ((limit - out) < (ptrdiff_t) (3 * CHUNKCOPY_CHUNK_SIZE)) {
+ while (len-- > 0) {
+ *out = *(out - dist);
+ out++;
+ }
+ return out;
+ }
+ return chunkcopy_lapped_relaxed(out, dist, len);
+}
+
+
+#undef Z_STATIC_ASSERT
+#undef Z_RESTRICT
+#undef Z_BUILTIN_MEMCPY
+
+#endif //defined(INFLATE_CHUNK_SIMD_NEON)
diff --git a/inflate.c b/inflate.c
index ca904e7..c78e05b 100644
--- a/inflate.c
+++ b/inflate.c
@@ -429,9 +429,16 @@ unsigned copy;
/* if it hasn't been done already, allocate space for the window */
if (state->window == Z_NULL) {
+#if defined(INFLATE_CHUNK_SIMD_NEON)
+ unsigned wsize = 1U << state->wbits;
+ state->window = (unsigned char FAR *)
+ ZALLOC(strm, CHUNKCOPY_CHUNK_SIZE + wsize,
+ sizeof(unsigned char));
+#else
state->window = (unsigned char FAR *)
ZALLOC(strm, 1U << state->wbits,
sizeof(unsigned char));
+#endif
if (state->window == Z_NULL) return 1;
}
diff --git a/adler32.c b/adler32.c
index e148022..e024a15 100644
--- a/adler32.c
+++ b/adler32.c
@@ -83,7 +83,169 @@ local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
# define MOD63(a) a %= BASE
#endif
-/* ========================================================================= */
+#if defined(ADLER32_SIMD_NEON)
+#include <arm_neon.h>
+/*
+ * Multiply-add bytes by [ 32, 31, 30, ... ] for s2.
+ */
+uint32x4_t ZLIB_INTERNAL mul_add_bytes(
+ uint32x4_t v_s2,
+ uint16x8_t v_column_sum_1,
+ uint16x8_t v_column_sum_2,
+ uint16x8_t v_column_sum_3,
+ uint16x8_t v_column_sum_4)
+{
+ v_s2 = vshlq_n_u32(v_s2, 5);
+
+ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_1),
+ (uint16x4_t) { 32, 31, 30, 29 });
+ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_1),
+ (uint16x4_t) { 28, 27, 26, 25 });
+ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_2),
+ (uint16x4_t) { 24, 23, 22, 21 });
+ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_2),
+ (uint16x4_t) { 20, 19, 18, 17 });
+ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_3),
+ (uint16x4_t) { 16, 15, 14, 13 });
+ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_3),
+ (uint16x4_t) { 12, 11, 10, 9 });
+ v_s2 = vmlal_u16(v_s2, vget_low_u16 (v_column_sum_4),
+ (uint16x4_t) { 8, 7, 6, 5 });
+ v_s2 = vmlal_u16(v_s2, vget_high_u16(v_column_sum_4),
+ (uint16x4_t) { 4, 3, 2, 1 });
+ return v_s2;
+}
+
+/*
+ * Handle leftover data.
+ */
+uLong ZLIB_INTERNAL leftover_handler(uint32_t s1, uint32_t s2, const Bytef *buf, z_size_t len)
+{
+ if (len) {
+ if (len >= 16) {
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+ s2 += (s1 += *buf++);
+
+ len -= 16;
+ }
+
+ while (len--) {
+ s2 += (s1 += *buf++);
+ }
+
+ if (s1 >= BASE)
+ s1 -= BASE;
+ s2 %= BASE;
+ }
+
+ /*
+ * Return the recombined sums.
+ */
+ return s1 | (s2 << 16);
+}
+
+uLong ZLIB_INTERNAL adler32_simd_(uLong adler, const Bytef *buf, z_size_t len)
+{
+ /*
+ * Split Adler-32 into component sums.
+ */
+ uint32_t s1 = adler & 0xffff;
+ uint32_t s2 = adler >> 16;
+ /*
+ * Serially compute s1 & s2, until the data is 16-byte aligned.
+ */
+ if ((uintptr_t)buf & 0xf) {
+ while ((uintptr_t)buf & 0xf) {
+ s2 += (s1 += *buf++);
+ --len;
+ }
+ if (s1 >= BASE)
+ s1 -= BASE;
+ s2 %= BASE;
+ }
+ /*
+ * Process the data in blocks.
+ */
+ const unsigned BLOCK_SIZE = 1 << 5;
+ z_size_t blocks = len / BLOCK_SIZE;
+ len -= blocks * BLOCK_SIZE;
+ while (blocks) {
+ unsigned n = NMAX / BLOCK_SIZE; /* The NMAX constraint. */
+ if (n > blocks)
+ n = (unsigned) blocks;
+ blocks -= n;
+ /*
+ * Process n blocks of data. At most NMAX data bytes can be
+ * processed before s2 must be reduced modulo BASE.
+ */
+ uint32x4_t v_s2 = (uint32x4_t) { 0, 0, 0, s1 * n };
+ uint32x4_t v_s1 = (uint32x4_t) { 0, 0, 0, 0 };
+
+ uint16x8_t v_column_sum_1 = vdupq_n_u16(0);
+ uint16x8_t v_column_sum_2 = vdupq_n_u16(0);
+ uint16x8_t v_column_sum_3 = vdupq_n_u16(0);
+ uint16x8_t v_column_sum_4 = vdupq_n_u16(0);
+ do {
+ /*
+ * Load 32 input bytes.
+ */
+ const uint8x16_t bytes1 = vld1q_u8((uint8_t*)(buf));
+ const uint8x16_t bytes2 = vld1q_u8((uint8_t*)(buf + 16));
+ /*
+ * Add previous block byte sum to v_s2.
+ */
+ v_s2 = vaddq_u32(v_s2, v_s1);
+ /*
+ * Horizontally add the bytes for s1.
+ */
+ v_s1 = vpadalq_u16(v_s1, vpadalq_u8(vpaddlq_u8(bytes1), bytes2));
+ /*
+ * Vertically add the bytes for s2.
+ */
+ v_column_sum_1 = vaddw_u8(v_column_sum_1, vget_low_u8 (bytes1));
+ v_column_sum_2 = vaddw_u8(v_column_sum_2, vget_high_u8(bytes1));
+ v_column_sum_3 = vaddw_u8(v_column_sum_3, vget_low_u8 (bytes2));
+ v_column_sum_4 = vaddw_u8(v_column_sum_4, vget_high_u8(bytes2));
+ buf += BLOCK_SIZE;
+ } while (--n);
+ v_s2 = mul_add_bytes(v_s2, v_column_sum_1, v_column_sum_2, v_column_sum_3, v_column_sum_4);
+ /*
+ * Sum epi32 ints v_s1(s2) and accumulate in s1(s2).
+ */
+ uint32x2_t sum1 = vpadd_u32(vget_low_u32(v_s1), vget_high_u32(v_s1));
+ uint32x2_t sum2 = vpadd_u32(vget_low_u32(v_s2), vget_high_u32(v_s2));
+ uint32x2_t s1s2 = vpadd_u32(sum1, sum2);
+
+ s1 += vget_lane_u32(s1s2, 0);
+ s2 += vget_lane_u32(s1s2, 1);
+ /*
+ * Reduce.
+ */
+ s1 %= BASE;
+ s2 %= BASE;
+ }
+ return leftover_handler(s1, s2, buf, len);
+
+}
+#endif
+
uLong ZEXPORT adler32_z(adler, buf, len)
uLong adler;
const Bytef *buf;
@@ -92,6 +254,11 @@ uLong ZEXPORT adler32_z(adler, buf, len)
unsigned long sum2;
unsigned n;
+#if defined(ADLER32_SIMD_NEON)
+ if (buf && len >= 64)
+ return adler32_simd_(adler, buf, len);
+#endif
+
/* split Adler-32 into component sums */
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
--- zlib-1.2.11/CMakeLists.txt 2020-08-04 14:35:44.023579477 +0800
+++ CMakeLists.txt 2020-08-04 14:39:38.937798725 +0800
@@ -145,6 +145,7 @@ if(CMAKE_COMPILER_IS_GNUCC)
contrib/arm/arm_longest_match.h)
set(ZLIB_ARM_NEON contrib/arm/inflate.c contrib/arm/inffast_chunk.c)
add_definitions(-DARM_NEON)
+ add_definitions(-DHASH_ARMV8_CRC32 -march=armv8-a+crc -DUNALIGNED_OK -DADLER32_SIMD_NEON -DINFLATE_CHUNK_SIMD_NEON -O3)
set(COMPILER ${CMAKE_C_COMPILER})
# NEON is mandatory in ARMv8.
if(${COMPILER} MATCHES "aarch64")
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/cherry530/zlib.git
git@gitee.com:cherry530/zlib.git
cherry530
zlib
zlib
master

搜索帮助