代码拉取完成,页面将自动刷新
import argparse
from tqdm import tqdm
import torch
import os
from DFCNN import AcousticModel
from readdata import SpeechData
import torch.nn as nn
import logging
from torchsummary import summary
import torchsnooper
# import horovod.torch as hvd
from tensorboardX import SummaryWriter as writer
import random
from BeamSearch import ctcBeamSearch
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
# required args
parser.add_argument('--data_type',
type=str,
required=True,
help='Either aishell or thchs')
parser.add_argument('--model_path',
type=str,
required=True,
help="loading or saving model")
# parameters for features.py and data iterator
parser.add_argument('--config_path',
type=str,
default='data_config',
help='config file')
parser.add_argument('--window_size',
type=int,
default=400,
help="Hamming window size, default value as 400")
parser.add_argument('--numcep',
type=int,
default=26,
help="MFCC feature numbers : number of cepstrum")
parser.add_argument('--time_window',
type=int,
default=25,
help="time window")
parser.add_argument('--step',
type=int,
default=10,
help="window shift step")
parser.add_argument('--batch_size',
type=int,
default=8,)
parser.add_argument('--max_window',
type=int,
default=1600,
help='Maximum of windows')
parser.add_argument('--max_seq_length',
type=int,
default=64,
help='maximum of sequence length')
# training procedures
parser.add_argument('--model_name',
type=str,
default="logs_am.pt")
parser.add_argument('--gpu_rank',
type=int,
default=4,
help="define number of gpus to use")
parser.add_argument('--lr',
type=float,
default=0.0001,
help="learning rate")
parser.add_argument('--epochs',
type=int,
default=5,
help="training epoch")
parser.add_argument('--save_step',
type=int,
default=10)
parser.add_argument('--load_model',
action="store_true")
parser.add_argument('--dev_step',
type=int,
default=10)
args = parser.parse_args()
if __name__ == '__main__':
# initialize horovod
# hvd.init()
from torch.utils.data import DataLoader
import torch.optim as optim
# torch.cuda.set_device(hvd.local_rank())
if torch.cuda.current_device() == 0:
logger.info("Args are as : %s" % args)
if torch.cuda.is_available():
assert args.gpu_rank <= torch.cuda.device_count(),\
"Should ensure that gpu_rank <= the number of yournvidia devices"
logger.info("%d gpu(s) detected and using %d devices." % (torch.cuda.device_count(), args.gpu_rank))
else:
logger.info("Using cpu will take you quite a long time, not recommended!")
train_data = SpeechData('data_config', dataset=args.data_type)
dev_data = SpeechData('data_config', type='dev', dataset=args.data_type)
# train_sampler = torch.utils.data.distributed.DistributedSampler(train_data,
# num_replicas=hvd.size(),
# rank=hvd.rank())
# dev_sampler = torch.utils.data.distributed.DistributedSampler(dev_data,
# num_replicas=hvd.size(),
# rank=hvd.rank())
vocab_size = train_data.label_nums()
logger.info("Total PNY labels : %d" % vocab_size)
train_loader = DataLoader(train_data, batch_size=11, shuffle=True)
dev_loader =DataLoader(dev_data, batch_size=11, shuffle=True)
model = AcousticModel(vocab_size=vocab_size, input_dimension=200)
model_path = args.model_path + '/' + args.model_name
if os.path.exists(model_path) and args.load_model:
logger.info("Model: %s exists, loading existing model..." % model_path)
model = torch.load(model_path)
else:
if not os.path.exists(args.model_path):
os.mkdir(args.model_path)
logger.info('No existing model in your provided path.')
model = model.cuda()
if torch.cuda.current_device() == 0:
print(model)
criterion = nn.CTCLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
if torch.cuda.current_device() == 0:
writer = writer()
tr_run = 0
for epoch in tqdm(range(args.epochs)):
if (epoch+1) % args.dev_step == 0:
model.eval()
model.cuda()
eval_loss = 0.0
if torch.cuda.current_device() == 0:
logger.info("Starting evaluating!")
for batch_idx, samples in enumerate(dev_loader):
# optimizer.zero_grad()
X, y, input_lengths, label_lengths, transcripts = samples
X = X.type(torch.FloatTensor).cuda()
y = y.type(torch.LongTensor).cuda()
input_lengths = model.convert(input_lengths)
label_lengths = label_lengths.cuda()
input_lengths = input_lengths.cuda()
with torch.no_grad():
outputs = model(X)
# print(outputs.shape, y.shape)
# outputs = outputs.cpu()
loss = criterion(outputs,
y,
input_lengths,
label_lengths)
eval_loss += loss
print(loss)
# loss.backward()
# optimizer.step()
if (batch_idx + 1) % int(len(dev_data)/(args.gpu_rank*int(args.batch_size/2))) == 0:
# print(outputs)
logger.info("Evaluating step %d, step loss : %.5f , total_mean_loss : %.5f"
% (batch_idx + 1, loss, eval_loss / (batch_idx + 1)))
# logger.info("mean_eval_loss: %.5f" % eval_loss/len(dev_data))
else:
model.train()
model.cuda()
epoch_loss = 0.0
logger.info("Running epoch %d/%d =>" % (epoch+1, args.epochs))
for batch_idx, samples in enumerate(train_loader):
tr_run += 1
optimizer.zero_grad()
X, y, input_lengths, label_lengths, transcripts = samples
X = X.type(torch.FloatTensor).cuda()
# y = y.reshape((args.batch_size*64,))
y = y.type(torch.LongTensor).cuda()
input_lengths = model.convert(input_lengths)
label_lengths = label_lengths.cuda()
input_lengths = input_lengths.cuda()
outputs = model(X)
# print(outputs.shape, y.shape)
# outputs = outputs.cpu()
loss = criterion(outputs,
y,
input_lengths,
label_lengths)
# if torch.cuda.current_device() == 0:
# writer.add_scalar('tr_loss', loss.data.item(), tr_run)
epoch_loss += loss
loss.backward()
optimizer.step()
if (batch_idx+1) % 10 == 0 and torch.cuda.current_device() == 0:
# print(outputs)
logger.info("Training step %d, progress %d/%d, step loss : %.5f , total_mean_loss : %.5f"
% (batch_idx+1, batch_idx+1, int(len(train_data)/(args.batch_size * args.gpu_rank)),
loss, epoch_loss/(batch_idx+1)))
# if loss < 10:
# # select_index = random.randint(0, args.batch_size-1)
# result = outputs.detach().transpose(0, 1).cpu().numpy()
# # result = np.transpose(result, [1, 0, 2])
# # print(result.shape)
# input_length = input_lengths.cpu().numpy()
# # result = np.hstack((result[:, 1:], result[:, 0].reshape((-1, 1))))
# # classes = list(train_data.i2w.values())[1:]
# decode = K.ctc_decode(result, input_length, greedy=False)
# print(K.get_value(decode[0][0]))
if (epoch+1) % args.save_step == 0 and torch.cuda.current_device() == 0:
logger.info("Saving model parameters into %s" % model_path)
torch.save(model.cpu(), model_path)
writer.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。