1 Star 0 Fork 324

maxwellplus/cybersectookits

forked from openKylin/cybersectookits 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
fashion.py 5.72 KB
一键复制 编辑 原始数据 按行查看 历史
张妞 提交于 2023-05-11 12:03 . fashionmnist
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 22 19:20:28 2021
@author: 86493
"""
import os
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt
from LDP import UER1_1
# 配置训练环境和超参数
# 配置GPU,这里有两种方式
## 方案一:使用os.environ
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
## 方案二:使用device,后续对要使用GPU的变量使用to(device)即可
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 配置其他超参数,如batch_size等
batch_size = 256
num_workers = 0
lr = 1e-4
epochs = 20
# 数据读入和加载
# 首先设置数据变换
image_size = 28
data_transform = transforms.Compose([
# 这一步取决于后续的数据读取方式,如果使用内置数据集则不需要
# transforms.ToPILImage(),
transforms.Resize(image_size),
transforms.ToTensor()
])
# 读取方式一:使用torchvision自带数据集,下载需要一段时间
train_data = datasets.FashionMNIST(root='./',
train=True,
download=True,
transform=data_transform)
test_data = datasets.FashionMNIST(root='./',
train=False,
download=True,
transform=data_transform)
# 定义dataloader类,以便在训练和测试时加载数据
train_loader = DataLoader(train_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
drop_last=True)
# 没有像训练数据集一样有drop_last
test_loader = DataLoader(test_data,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers)
# 数据可视化,验证读入的数据是否正确
image, label = next(iter(train_loader))
print(image.shape, label.shape)
"""
plt.imshow(image[0][0], cmap = "gray")
"""
# 搭建一个CNN,后面将模型放到GPU上训练
class CNNnet(nn.Module):
def __init__(self):
super(CNNnet, self).__init__()
self.conv = nn.Sequential(
# 黑白图片的in_channels = 1
nn.Conv2d(1, 32, 5),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
# 防止过拟合
nn.Dropout(0.3),
nn.Conv2d(32, 64, 5),
nn.ReLU(),
# 下面第一个2为kernel_size的大小
nn.MaxPool2d(2, stride=2),
nn.Dropout(0.3)
)
self.fc = nn.Sequential(
nn.Linear(64 * 4 * 4, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.conv(x)
x = x.view(-1, 64 * 4 * 4)
# x = x.view(64*4*4, -1)
print(x.size())
# print("original data")
# print(x)
# error_sum=0
for i in range(len(x)):
op = []
for j in x[i]:
op.append(float(j))
list1 = UER1_1.main(op)
# error_sum=error_sum+error
for ii in range(len(x[i])):
x[i][ii] = list1[ii]
# print("batch:64的平均误差"+str(error_sum/len(x)))
print("perturbed data")
x = self.fc(x)
# x = nn.functional.normalize(x)
return x
"""
model = CNNnet()
print(model)
"""
model = CNNnet()
# model = model.cuda()
# 多卡训练还可以这样写
model = nn.DataParallel(model)#.cuda()
# 设计损失函数
criterion = nn.CrossEntropyLoss()
# criterion = nn.CrossEntropyLoss(weight = [1, 1, 1, 1, 3, 1, 1, 1, 1, 1])
# 设计优化器
optimizer = optim.Adam(model.parameters(),
lr=0.001)
def train(epoch):
model.train()
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
# 1.准备数据
inputs, target = data
# 迁移到GPU
inputs, target = inputs.to(device), target.to(device)
# 2.前向传递
outputs = model(inputs)
loss = criterion(outputs, target)
# 3.反向传播
optimizer.zero_grad()
loss.backward()
# 4.更新参数
optimizer.step()
running_loss += loss.item()
if batch_idx % 30 == 29:
print('[%d, %5d] loss: %.3f' % (
epoch + 1,
batch_idx + 1,
running_loss / 30))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# 求出每一行(样本)的最大值的下标,dim=1即行的维度
# 返回最大值和最大值所在的下标
_, predicted = torch.max(outputs.data, dim=1)
# label矩阵为N × 1
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set :%d %% ' % (100 * correct / total))
return correct / total
if __name__ == '__main__':
epoch_list = []
acc_list = []
for epoch in range(10):
train(epoch)
acc = test()
epoch_list.append(epoch)
acc_list.append(acc)
plt.plot(epoch_list, acc_list)
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.show()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/chentao_cc/cybersectookits.git
git@gitee.com:chentao_cc/cybersectookits.git
chentao_cc
cybersectookits
cybersectookits
master

搜索帮助