1 Star 2 Fork 0

chensong/meta-learning-lstm-pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
main.py 8.75 KB
一键复制 编辑 原始数据 按行查看 历史
Mark Dong 提交于 2019-02-25 20:26 . alrighty then
from __future__ import division, print_function, absolute_import
import os
import pdb
import copy
import random
import argparse
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
from learner import Learner
from metalearner import MetaLearner
from dataloader import prepare_data
from utils import *
FLAGS = argparse.ArgumentParser()
FLAGS.add_argument('--mode', choices=['train', 'test'])
# Hyper-parameters
FLAGS.add_argument('--n-shot', type=int,
help="How many examples per class for training (k, n_support)")
FLAGS.add_argument('--n-eval', type=int,
help="How many examples per class for evaluation (n_query)")
FLAGS.add_argument('--n-class', type=int,
help="How many classes (N, n_way)")
FLAGS.add_argument('--input-size', type=int,
help="Input size for the first LSTM")
FLAGS.add_argument('--hidden-size', type=int,
help="Hidden size for the first LSTM")
FLAGS.add_argument('--lr', type=float,
help="Learning rate")
FLAGS.add_argument('--episode', type=int,
help="Episodes to train")
FLAGS.add_argument('--episode-val', type=int,
help="Episodes to eval")
FLAGS.add_argument('--epoch', type=int,
help="Epoch to train for an episode")
FLAGS.add_argument('--batch-size', type=int,
help="Batch size when training an episode")
FLAGS.add_argument('--image-size', type=int,
help="Resize image to this size")
FLAGS.add_argument('--grad-clip', type=float,
help="Clip gradients larger than this number")
FLAGS.add_argument('--bn-momentum', type=float,
help="Momentum parameter in BatchNorm2d")
FLAGS.add_argument('--bn-eps', type=float,
help="Eps parameter in BatchNorm2d")
# Paths
FLAGS.add_argument('--data', choices=['miniimagenet'],
help="Name of dataset")
FLAGS.add_argument('--data-root', type=str,
help="Location of data")
FLAGS.add_argument('--resume', type=str,
help="Location to pth.tar")
FLAGS.add_argument('--save', type=str, default='logs',
help="Location to logs and ckpts")
# Others
FLAGS.add_argument('--cpu', action='store_true',
help="Set this to use CPU, default use CUDA")
FLAGS.add_argument('--n-workers', type=int, default=4,
help="How many processes for preprocessing")
FLAGS.add_argument('--pin-mem', type=bool, default=False,
help="DataLoader pin_memory")
FLAGS.add_argument('--log-freq', type=int, default=100,
help="Logging frequency")
FLAGS.add_argument('--val-freq', type=int, default=1000,
help="Validation frequency")
FLAGS.add_argument('--seed', type=int,
help="Random seed")
def meta_test(eps, eval_loader, learner_w_grad, learner_wo_grad, metalearner, args, logger):
for subeps, (episode_x, episode_y) in enumerate(tqdm(eval_loader, ascii=True)):
train_input = episode_x[:, :args.n_shot].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_shot, :]
train_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_shot)).to(args.dev) # [n_class * n_shot]
test_input = episode_x[:, args.n_shot:].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_eval, :]
test_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_eval)).to(args.dev) # [n_class * n_eval]
# Train learner with metalearner
learner_w_grad.reset_batch_stats()
learner_wo_grad.reset_batch_stats()
learner_w_grad.train()
learner_wo_grad.eval()
cI = train_learner(learner_w_grad, metalearner, train_input, train_target, args)
learner_wo_grad.transfer_params(learner_w_grad, cI)
output = learner_wo_grad(test_input)
loss = learner_wo_grad.criterion(output, test_target)
acc = accuracy(output, test_target)
logger.batch_info(loss=loss.item(), acc=acc, phase='eval')
return logger.batch_info(eps=eps, totaleps=args.episode_val, phase='evaldone')
def train_learner(learner_w_grad, metalearner, train_input, train_target, args):
cI = metalearner.metalstm.cI.data
hs = [None]
for _ in range(args.epoch):
for i in range(0, len(train_input), args.batch_size):
x = train_input[i:i+args.batch_size]
y = train_target[i:i+args.batch_size]
# get the loss/grad
learner_w_grad.copy_flat_params(cI)
output = learner_w_grad(x)
loss = learner_w_grad.criterion(output, y)
acc = accuracy(output, y)
learner_w_grad.zero_grad()
loss.backward()
grad = torch.cat([p.grad.data.view(-1) / args.batch_size for p in learner_w_grad.parameters()], 0)
# preprocess grad & loss and metalearner forward
grad_prep = preprocess_grad_loss(grad) # [n_learner_params, 2]
loss_prep = preprocess_grad_loss(loss.data.unsqueeze(0)) # [1, 2]
metalearner_input = [loss_prep, grad_prep, grad.unsqueeze(1)]
cI, h = metalearner(metalearner_input, hs[-1])
hs.append(h)
#print("training loss: {:8.6f} acc: {:6.3f}, mean grad: {:8.6f}".format(loss, acc, torch.mean(grad)))
return cI
def main():
args, unparsed = FLAGS.parse_known_args()
if len(unparsed) != 0:
raise NameError("Argument {} not recognized".format(unparsed))
if args.seed is None:
args.seed = random.randint(0, 1e3)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cpu:
args.dev = torch.device('cpu')
else:
if not torch.cuda.is_available():
raise RuntimeError("GPU unavailable.")
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args.dev = torch.device('cuda')
logger = GOATLogger(args)
# Get data
train_loader, val_loader, test_loader = prepare_data(args)
# Set up learner, meta-learner
learner_w_grad = Learner(args.image_size, args.bn_eps, args.bn_momentum, args.n_class).to(args.dev)
learner_wo_grad = copy.deepcopy(learner_w_grad)
metalearner = MetaLearner(args.input_size, args.hidden_size, learner_w_grad.get_flat_params().size(0)).to(args.dev)
metalearner.metalstm.init_cI(learner_w_grad.get_flat_params())
# Set up loss, optimizer, learning rate scheduler
optim = torch.optim.Adam(metalearner.parameters(), args.lr)
if args.resume:
logger.loginfo("Initialized from: {}".format(args.resume))
last_eps, metalearner, optim = resume_ckpt(metalearner, optim, args.resume, args.dev)
if args.mode == 'test':
_ = meta_test(last_eps, test_loader, learner_w_grad, learner_wo_grad, metalearner, args, logger)
return
best_acc = 0.0
logger.loginfo("Start training")
# Meta-training
for eps, (episode_x, episode_y) in enumerate(train_loader):
# episode_x.shape = [n_class, n_shot + n_eval, c, h, w]
# episode_y.shape = [n_class, n_shot + n_eval] --> NEVER USED
train_input = episode_x[:, :args.n_shot].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_shot, :]
train_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_shot)).to(args.dev) # [n_class * n_shot]
test_input = episode_x[:, args.n_shot:].reshape(-1, *episode_x.shape[-3:]).to(args.dev) # [n_class * n_eval, :]
test_target = torch.LongTensor(np.repeat(range(args.n_class), args.n_eval)).to(args.dev) # [n_class * n_eval]
# Train learner with metalearner
learner_w_grad.reset_batch_stats()
learner_wo_grad.reset_batch_stats()
learner_w_grad.train()
learner_wo_grad.train()
cI = train_learner(learner_w_grad, metalearner, train_input, train_target, args)
# Train meta-learner with validation loss
learner_wo_grad.transfer_params(learner_w_grad, cI)
output = learner_wo_grad(test_input)
loss = learner_wo_grad.criterion(output, test_target)
acc = accuracy(output, test_target)
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(metalearner.parameters(), args.grad_clip)
optim.step()
logger.batch_info(eps=eps, totaleps=args.episode, loss=loss.item(), acc=acc, phase='train')
# Meta-validation
if eps % args.val_freq == 0 and eps != 0:
save_ckpt(eps, metalearner, optim, args.save)
acc = meta_test(eps, val_loader, learner_w_grad, learner_wo_grad, metalearner, args, logger)
if acc > best_acc:
best_acc = acc
logger.loginfo("* Best accuracy so far *\n")
logger.loginfo("Done")
if __name__ == '__main__':
main()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/chensong121/meta-learning-lstm-pytorch.git
git@gitee.com:chensong121/meta-learning-lstm-pytorch.git
chensong121
meta-learning-lstm-pytorch
meta-learning-lstm-pytorch
master

搜索帮助