代码拉取完成,页面将自动刷新
import os
import datetime
import torch
import transforms
from my_dataset import VOCDataSet
from src import SSD300, Backbone
import train_utils.train_eval_utils as utils
from train_utils import get_coco_api_from_dataset
def create_model(num_classes=21):
# https://download.pytorch.org/models/resnet50-19c8e357.pth
# pre_train_path = "./src/resnet50.pth"
backbone = Backbone()
model = SSD300(backbone=backbone, num_classes=num_classes)
# https://ngc.nvidia.com/catalog/models -> search ssd -> download FP32
pre_ssd_path = "./src/nvidia_ssdpyt_fp32.pt"
if os.path.exists(pre_ssd_path) is False:
raise FileNotFoundError("nvidia_ssdpyt_fp32.pt not find in {}".format(pre_ssd_path))
pre_model_dict = torch.load(pre_ssd_path, map_location='cpu')
pre_weights_dict = pre_model_dict["model"]
# 删除类别预测器权重,注意,回归预测器的权重可以重用,因为不涉及num_classes
del_conf_loc_dict = {}
for k, v in pre_weights_dict.items():
split_key = k.split(".")
if "conf" in split_key:
continue
del_conf_loc_dict.update({k: v})
missing_keys, unexpected_keys = model.load_state_dict(del_conf_loc_dict, strict=False)
if len(missing_keys) != 0 or len(unexpected_keys) != 0:
print("missing_keys: ", missing_keys)
print("unexpected_keys: ", unexpected_keys)
return model
def main(parser_data):
device = torch.device(parser_data.device if torch.cuda.is_available() else "cpu")
print("Using {} device training.".format(device.type))
if not os.path.exists("save_weights"):
os.mkdir("save_weights")
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
data_transform = {
"train": transforms.Compose([transforms.SSDCropping(),
transforms.Resize(),
transforms.ColorJitter(),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.Normalization(),
transforms.AssignGTtoDefaultBox()]),
"val": transforms.Compose([transforms.Resize(),
transforms.ToTensor(),
transforms.Normalization()])
}
VOC_root = parser_data.data_path
# check voc root
if os.path.exists(os.path.join(VOC_root, "VOCdevkit")) is False:
raise FileNotFoundError("VOCdevkit dose not in path:'{}'.".format(VOC_root))
# VOCdevkit -> VOC2012 -> ImageSets -> Main -> train.txt
train_dataset = VOCDataSet(VOC_root, "2012", data_transform['train'], train_set='train.txt')
# 注意训练时,batch_size必须大于1
batch_size = parser_data.batch_size
assert batch_size > 1, "batch size must be greater than 1"
# 防止最后一个batch_size=1,如果最后一个batch_size=1就舍去
drop_last = True if len(train_dataset) % batch_size == 1 else False
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using %g dataloader workers' % nw)
train_data_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=nw,
collate_fn=train_dataset.collate_fn,
drop_last=drop_last)
# VOCdevkit -> VOC2012 -> ImageSets -> Main -> val.txt
val_dataset = VOCDataSet(VOC_root, "2012", data_transform['val'], train_set='val.txt')
val_data_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
num_workers=nw,
collate_fn=train_dataset.collate_fn)
model = create_model(num_classes=args.num_classes+1)
model.to(device)
# define optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.0005,
momentum=0.9, weight_decay=0.0005)
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=5,
gamma=0.3)
# 如果指定了上次训练保存的权重文件地址,则接着上次结果接着训练
if parser_data.resume != "":
checkpoint = torch.load(parser_data.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
parser_data.start_epoch = checkpoint['epoch'] + 1
print("the training process from epoch{}...".format(parser_data.start_epoch))
train_loss = []
learning_rate = []
val_map = []
# 提前加载验证集数据,以免每次验证时都要重新加载一次数据,节省时间
val_data = get_coco_api_from_dataset(val_data_loader.dataset)
for epoch in range(parser_data.start_epoch, parser_data.epochs):
mean_loss, lr = utils.train_one_epoch(model=model, optimizer=optimizer,
data_loader=train_data_loader,
device=device, epoch=epoch,
print_freq=50)
train_loss.append(mean_loss.item())
learning_rate.append(lr)
# update learning rate
lr_scheduler.step()
coco_info = utils.evaluate(model=model, data_loader=val_data_loader,
device=device, data_set=val_data)
# write into txt
with open(results_file, "a") as f:
# 写入的数据包括coco指标还有loss和learning rate
result_info = [str(round(i, 4)) for i in coco_info + [mean_loss.item()]] + [str(round(lr, 6))]
txt = "epoch:{} {}".format(epoch, ' '.join(result_info))
f.write(txt + "\n")
val_map.append(coco_info[1]) # pascal mAP
# save weights
save_files = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch}
torch.save(save_files, "./save_weights/ssd300-{}.pth".format(epoch))
# plot loss and lr curve
if len(train_loss) != 0 and len(learning_rate) != 0:
from plot_curve import plot_loss_and_lr
plot_loss_and_lr(train_loss, learning_rate)
# plot mAP curve
if len(val_map) != 0:
from plot_curve import plot_map
plot_map(val_map)
# inputs = torch.rand(size=(2, 3, 300, 300))
# output = model(inputs)
# print(output)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练设备类型
parser.add_argument('--device', default='cuda:0', help='device')
# 检测的目标类别个数,不包括背景
parser.add_argument('--num_classes', default=20, type=int, help='num_classes')
# 训练数据集的根目录(VOCdevkit)
parser.add_argument('--data-path', default='./', help='dataset')
# 文件保存地址
parser.add_argument('--output-dir', default='./save_weights', help='path where to save')
# 若需要接着上次训练,则指定上次训练保存权重文件地址
parser.add_argument('--resume', default='', type=str, help='resume from checkpoint')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=15, type=int, metavar='N',
help='number of total epochs to run')
# 训练的batch size
parser.add_argument('--batch_size', default=4, type=int, metavar='N',
help='batch size when training.')
args = parser.parse_args()
print(args)
# 检查保存权重文件夹是否存在,不存在则创建
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
main(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。