代码拉取完成,页面将自动刷新
from __future__ import absolute_import, division, print_function
import argparse
import math
import os
import pdb
import sys
#import matplotlib.pyplot as plt
import time
import cv2
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
from scipy.misc import imread, imresize, imsave, imshow
from torch.autograd import Variable
from data import *
from data import BaseTransform, TestBaseTransform
from data import WIDERFace_CLASSES as labelmap
from data import (WIDERFace_ROOT, WIDERFaceAnnotationTransform,
WIDERFaceDetection)
from face_ssd import build_ssd
from utils import draw_toolbox
from widerface_val import (bbox_vote, detect_face, multi_scale_test,
multi_scale_test_pyramid)
#plt.switch_backend('agg')
parser = argparse.ArgumentParser(description='DSFD: Dual Shot Face Detector')
parser.add_argument('--trained_model', default='weights/WIDERFace_DSFD_RES152.pth',
type=str, help='Trained state_dict file path to open')
parser.add_argument('--split_dir', default='./fddb/FDDB-folds',
type=str, help='Dir to folds')
parser.add_argument('--data_dir', default='./fddb/originalPics',
type=str, help='Dir to all images')
parser.add_argument('--det_dir', default='./fddb/results1',
type=str, help='Dir to save results')
parser.add_argument('--visual_threshold', default=0.01, type=float,
help='Final confidence threshold')
parser.add_argument('--cuda', default=True, type=bool,
help='Use cuda to train model')
args = parser.parse_args()
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def flip_test(image, shrink):
image_f = cv2.flip(image, 1)
det_f = detect_face(image_f, shrink)
det_t = np.zeros(det_f.shape)
det_t[:, 0] = image.shape[1] - det_f[:, 2]
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = image.shape[1] - det_f[:, 0]
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
# load net
cfg = widerface_640
num_classes = len(WIDERFace_CLASSES) + 1 # +1 background
net = build_ssd('test', cfg['min_dim'], num_classes) # initialize SSD
net.load_state_dict(torch.load(args.trained_model))
net.cuda()
net.eval()
print('Finished loading model!')
def test_fddbface():
# evaluation
cuda = args.cuda
thresh=cfg['conf_thresh']
os.makedirs(args.det_dir, exist_ok=True)
all_splits = sorted([_ for _ in os.listdir(args.split_dir) if 'ellipseList' not in _])
for folder_ind in range(1, 11):
with open(os.path.join(args.split_dir, all_splits[folder_ind-1]), 'r') as fp:
read_lines = fp.readlines()
all_images = [line.strip() for line in read_lines]
sys.stdout.write('>> Predicting folder %d/%d\n' % (folder_ind, 10))
sys.stdout.flush()
#print(all_images)
with open(os.path.join(args.det_dir, 'fold-{:02d}-out.txt'.format(folder_ind)), 'wt') as f:
all_image_length = len(all_images)
for image_ind, image_name in enumerate(all_images):
sys.stdout.write('\r>> Predicting image %d/%d' % (image_ind, all_image_length))
sys.stdout.flush()
#np_image = imread(os.path.join(data_dir, image_name+'.jpg'))
np_image = cv2.imread(os.path.join(args.data_dir, image_name+'.jpg'))
if len(np_image.shape) < 3:
np_image = np.stack((np_image,) * 3, -1)
image = np_image#torch.from_numpy(np_image).permute(2, 0, 1)
#max_im_shrink = ( (2000.0*2000.0) / (img.shape[0] * img.shape[1])) ** 0.5
max_im_shrink = (0x7fffffff / 200.0 / (image.shape[0] * image.shape[1])) ** 0.5 # the max size of input image for caffe
max_im_shrink = 3 if max_im_shrink > 3 else max_im_shrink
shrink = max_im_shrink if max_im_shrink < 1 else 1
det0 = detect_face(image, shrink) # origin test
det1 = flip_test(image, shrink) # flip test
det = np.row_stack((det0, det1))
dets = bbox_vote(det)
#dets = bbox_vote2(det0)
# if not os.path.exists(save_path + event):
# os.makedirs(save_path + event)
# f = open(save_path + event + '/' + img_id.split('.')[0] + '.txt', 'w')
# #f = open(save_path + str(event[0][0].encode('utf-8'))[2:-1] + '/' + im_name + '.txt', 'w')
# write_to_txt(f, dets , event, img_id)
bbox_xmin = dets[:, 0]
bbox_ymin = dets[:, 1]
bbox_xmax = dets[:, 2]
bbox_ymax = dets[:, 3]
scores = dets[:, 4]
bbox_height = bbox_ymax - bbox_ymin + 1
bbox_width = bbox_xmax - bbox_xmin + 1
img_to_draw = draw_toolbox.absolute_bboxes_draw_on_img(np_image, scores, dets, thickness=2)
imsave(os.path.join('./debug/{}.jpg').format(image_ind), img_to_draw)
valid_mask = np.logical_and(np.logical_and((bbox_height > 1), (bbox_width > 1)), (scores > 0.05))
f.write('{:s}\n'.format(image_name))
f.write('{}\n'.format(np.count_nonzero(valid_mask)))
#print(valid_mask.shape[0], bbox_xmin.shape[0], bboxes.shape[0], bbox_width.shape[0], scores.shape[0])
for det_ind in range(valid_mask.shape[0]):
if not valid_mask[det_ind]:
continue
f.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.format(np.floor(bbox_xmin[det_ind]), np.floor(bbox_ymin[det_ind]), np.ceil(bbox_width[det_ind]), np.ceil(bbox_height[det_ind]), scores[det_ind]))
sys.stdout.write('\n')
sys.stdout.flush()
if __name__=='__main__':
test_fddbface()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。