1 Star 0 Fork 1

比比/minimind

forked from surgar2022/minimind 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
1-pretrain.py 7.94 KB
一键复制 编辑 原始数据 按行查看 历史
gongjingyao 提交于 2024-10-19 06:31 . update num_workers
import os
import platform
import argparse
import time
import math
import warnings
import pandas as pd
import torch
import torch.distributed as dist
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, DistributedSampler
from contextlib import nullcontext
from transformers import AutoTokenizer
from model.model import Transformer
from model.LMConfig import LMConfig
from model.dataset import PretrainDataset
warnings.filterwarnings('ignore')
def Logger(content):
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(it, all):
warmup_iters = args.warmup_iters
lr_decay_iters = all
min_lr = args.learning_rate / 10
if it < warmup_iters:
return args.learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (args.learning_rate - min_lr)
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
out = model(X, Y)
loss = out.last_loss / args.accumulation_steps
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
args.epochs,
step,
iter_per_epoch,
loss.item() * args.accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({"loss": loss.item() * args.accumulation_steps,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(state_dict, ckp)
model.train()
def init_model():
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model = Transformer(lm_config).to(args.device)
# moe_path = '_moe' if lm_config.use_moe else ''
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
return model, tokenizer
def init_distributed_mode():
if not ddp: return
global ddp_local_rank, DEVICE
dist.init_process_group(backend="nccl")
ddp_rank = int(os.environ["RANK"])
ddp_local_rank = int(os.environ["LOCAL_RANK"])
ddp_world_size = int(os.environ["WORLD_SIZE"])
DEVICE = f"cuda:{ddp_local_rank}"
torch.cuda.set_device(DEVICE)
# torchrun --nproc_per_node 2 1-pretrain.py
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu",
help="Device to use")
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain", help="Weights & Biases project name")
parser.add_argument("--num_workers", type=int, default=1, help="Number of workers for data loading")
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_data.csv", help="Path to training data")
parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")
parser.add_argument("--accumulation_steps", type=int, default=8, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
parser.add_argument('--local_rank', type=int, default=-1, help='local rank for distributed training')
args = parser.parse_args()
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * max_seq_len
torch.manual_seed(1337)
device_type = "cuda" if "cuda" in args.device else "cpu"
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
model, tokenizer = init_model()
df = pd.read_csv(args.data_path)
df = df.sample(frac=1.0)
train_ds = PretrainDataset(df, tokenizer, max_length=max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
Logger("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/bibi100/minimind.git
git@gitee.com:bibi100/minimind.git
bibi100
minimind
minimind
master

搜索帮助