1 Star 0 Fork 0

程威/Stand-Alone-Self-Attention

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
model.py 4.41 KB
一键复制 编辑 原始数据 按行查看 历史
myeongjun 提交于 2019-07-25 23:35 . [Delete] img_size parameters
import torch
import torch.nn as nn
import torch.nn.functional as F
from attention import AttentionConv, AttentionStem
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, groups=1, base_width=64):
super(Bottleneck, self).__init__()
self.stride = stride
width = int(out_channels * (base_width / 64.)) * groups
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, width, kernel_size=1, bias=False),
nn.BatchNorm2d(width),
nn.ReLU(),
)
self.conv2 = nn.Sequential(
AttentionConv(width, width, kernel_size=7, padding=3, groups=8),
nn.BatchNorm2d(width),
nn.ReLU(),
)
self.conv3 = nn.Sequential(
nn.Conv2d(width, self.expansion * out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(self.expansion * out_channels),
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != self.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * out_channels)
)
def forward(self, x):
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.stride >= 2:
out = F.avg_pool2d(out, (self.stride, self.stride))
out += self.shortcut(x)
out = F.relu(out)
return out
class Model(nn.Module):
def __init__(self, block, num_blocks, num_classes=1000, stem=False):
super(Model, self).__init__()
self.in_places = 64
if stem:
self.init = nn.Sequential(
# CIFAR10
AttentionStem(in_channels=3, out_channels=64, kernel_size=4, stride=1, padding=2, groups=1),
nn.BatchNorm2d(64),
nn.ReLU(),
# For ImageNet
# AttentionStem(in_channels=3, out_channels=64, kernel_size=4, stride=1, padding=2, groups=1),
# nn.BatchNorm2d(64),
# nn.ReLU(),
# nn.MaxPool2d(4, 4)
)
else:
self.init = nn.Sequential(
# CIFAR10
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
# For ImageNet
# nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False),
# nn.BatchNorm2d(64),
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.dense = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_places, planes, stride))
self.in_places = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.init(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.dense(out)
return out
def ResNet26(num_classes=1000, stem=False):
return Model(Bottleneck, [1, 2, 4, 1], num_classes=num_classes, stem=stem)
def ResNet38(num_classes=1000, stem=False):
return Model(Bottleneck, [2, 3, 5, 2], num_classes=num_classes, stem=stem)
def ResNet50(num_classes=1000, stem=False):
return Model(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, stem=stem)
def get_model_parameters(model):
total_parameters = 0
for layer in list(model.parameters()):
layer_parameter = 1
for l in list(layer.size()):
layer_parameter *= l
total_parameters += layer_parameter
return total_parameters
# temp = torch.randn((2, 3, 224, 224))
# model = ResNet38(num_classes=1000, stem=True)
# print(get_model_parameters(model))
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/aweijx/Stand-Alone-Self-Attention.git
git@gitee.com:aweijx/Stand-Alone-Self-Attention.git
aweijx
Stand-Alone-Self-Attention
Stand-Alone-Self-Attention
master

搜索帮助