代码拉取完成,页面将自动刷新
同步操作将从 Swiper_witty/K210 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import sensor
import image
import lcd
import KPU as kpu
import time
from Maix import FPIOA, GPIO
import gc
from fpioa_manager import fm
from board import board_info
import utime
from Maix import utils
import machine
#记录的人脸数
face_num = 10
task_fd = kpu.load(0x300000)
task_ld = kpu.load(0x400000)
task_fe = kpu.load(0x500000)
clock = time.clock()
#设置按键的IO
fm.register(2, fm.fpioa.GPIOHS0)
key_gpio = GPIO(GPIO.GPIOHS0, GPIO.IN)
start_processing = False
BOUNCE_PROTECTION = 50
#按键中断
def set_key_state(*_):
global start_processing
start_processing = True
utime.sleep_ms(BOUNCE_PROTECTION)
#设置按键中断
key_gpio.irq(set_key_state, GPIO.IRQ_RISING, GPIO.WAKEUP_NOT_SUPPORT)
lcd.init()
lcd.init(invert = 10)
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.set_hmirror(1)
#sensor.set_vflip(1)
sensor.run(1)
#不可修改
anchor = (1.889, 2.5245, 2.9465, 3.94056, 3.99987, 5.3658, 5.155437,
6.92275, 6.718375, 9.01025) # anchor for face detect‘
#人脸关键点
dst_point = [(44, 59), (84, 59), (64, 82), (47, 105),
(81, 105)] # standard face key point position
a = kpu.init_yolo2(task_fd, 0.5, 0.3, 5, anchor)
img_lcd = image.Image()
img_face = image.Image(size=(128, 128))
a = img_face.pix_to_ai()
record_ftr = []
record_ftrs = []
#人脸名称,可自定义
names = ['Mr.1', 'Mr.2', 'Mr.3', 'Mr.4', 'Mr.5',
'Mr.6', 'Mr.7', 'Mr.8', 'Mr.9', 'Mr.10']
#人脸检测的阈值
ACCURACY = 80
while (1):
img = sensor.snapshot()
clock.tick()
#运行人脸检测模型
code = kpu.run_yolo2(task_fd, img)
#保存的人脸大于5时退出,这里可自由发挥
if len(record_ftrs) >=face_num:
break
#如果存在人脸
if code:
for i in code:
a = img.draw_rectangle(i.rect())
#裁切人脸的方框并resize至128*128
face_cut = img.cut(i.x(), i.y(), i.w(), i.h())
face_cut_128 = face_cut.resize(128, 128)
#将修改的图片应用至ai缓存区
a = face_cut_128.pix_to_ai()
#Landmark for face 5 points
fmap = kpu.forward(task_ld, face_cut_128)
plist = fmap[:]
le = (i.x() + int(plist[0] * i.w() - 10), i.y() + int(plist[1] * i.h()))
re = (i.x() + int(plist[2] * i.w()), i.y() + int(plist[3] * i.h()))
nose = (i.x() + int(plist[4] * i.w()), i.y() + int(plist[5] * i.h()))
lm = (i.x() + int(plist[6] * i.w()), i.y() + int(plist[7] * i.h()))
rm = (i.x() + int(plist[8] * i.w()), i.y() + int(plist[9] * i.h()))
# 人脸管件点信息
src_point = [le, re, nose, lm, rm]
T = image.get_affine_transform(src_point, dst_point)
a = image.warp_affine_ai(img, img_face, T)
a = img_face.ai_to_pix()
del (face_cut_128)
#获取人脸特征图
fmap = kpu.forward(task_fe, img_face)
#人脸特征
feature = kpu.face_encode(fmap[:])
reg_flag = False
scores = []
#计算已储存的人脸的特征值
for j in range(len(record_ftrs)):
score = kpu.face_compare(record_ftrs[j], feature)
scores.append(score)
#找出当前储存的人脸特征与现在检测到的人脸特征最相似的
max_score = 0
index = 0
for k in range(len(scores)):
if max_score < scores[k]:
max_score = scores[k]
index = k
#在显示屏上显示当前人脸的对象
if max_score > ACCURACY:
a = img.draw_string(i.x(), i.y(), ("%s :%2.1f" % (
names[index], max_score)), lcd.BLUE,2)
else:
a = img.draw_string(i.x(), i.y(), ("X :%2.1f" % (
max_score)), lcd.RED,2)
#按键按下,录入人脸
if start_processing:
record_ftr = feature
record_ftrs.append(record_ftr)
print(record_ftrs)
start_processing = False
fps = clock.fps()
a = lcd.display(img)
gc.collect()
#保存人脸特征值
with open('/flash/face_tag.dat','wb') as f:
for i in record_ftrs:
f.write(i)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。