1 Star 1 Fork 7

连享会/nwcommands

Create your Gitee Account
Explore and code with more than 12 million developers,Free private repositories !:)
Sign up
文件
Clone or Download
nwdissimilar.ado 5.60 KB
Copy Edit Raw Blame History
ThomasGrund authored 2015-12-10 10:45 . v1.6.4
capture program drop nwdissimilar
program nwdissimilar
syntax [anything(name=netname)] [, type(string) labs(passthru) vars(passthru) name(string) context(string) xvars]
_nwsyntax `netname'
if "`context'" == "" {
local context = "both"
}
if "`type'" == "" {
local type = "euclidean"
}
_opts_oneof "euclidean manhatten nonmatches jaccard hamming" "type" "`type'" 6556
_opts_oneof "incoming outgoing both" "context" "`context'" 6556
if "`name'" == "" {
local name = "_dissimilar"
}
nwvalidate `name'
local name = "`r(validname)'"
local dtype = 0
if "`context'" == "incoming" {
local dtype = 1
}
if "`context'" == "outgoing" {
local dtype = 2
}
nwtomatafast `netname'
if "`type'" == "euclidean" {
nwset, mat(euclidean_dissimilarity(`r(mata)', `dtype')) name(`name') `labs' `vars'
}
if "`type'" == "manhatten" {
nwset, mat(manhatten_dissimilarity(`r(mata)', `dtype')) name(`name') `labs' `vars'
}
if "`type'" == "nonmatches" {
nwset, mat(matches_dissimilarity(`r(mata)', `dtype')) name(`name') `labs' `vars'
}
if "`type'" == "jaccard" {
nwset, mat(jaccard_dissimilarity(`r(mata)', `dtype')) name(`name') `labs' `vars'
}
if "`type'" == "hamming" {
nwset, mat(hamming_dissimilarity(`r(mata)', `dtype')) name(`name') `labs' `vars'
}
if "`xvars'" == "" {
nwload `name'
}
end
capture mata mata drop euclidean_dissimilarity()
capture mata mata drop manhatten_dissimilarity()
capture mata mata drop matches_dissimilarity()
capture mata mata drop jaccard_dissimilarity()
capture mata mata drop hamming_dissimilarity()
mata:
real matrix euclidean_dissimilarity(real matrix net, real scalar dtype){
S = J(rows(net), cols(net), 0)
for(i = 1; i<= rows(S); i++){
for(j = 1; j<= cols(S); j++){
i_outvec = net[i,.]
i_invec = net[.,i]
j_outvec = net[j,.]
j_invec = net[.,j]
i_outvec[i] = 0
i_outvec[j] = 0
i_invec[i] = 0
i_invec[j] = 0
j_outvec[i] = 0
j_outvec[j] = 0
j_invec[i] = 0
j_invec[j] = 0
if (dtype == 0 ) {
S[i,j] = sqrt(sum((i_outvec :- j_outvec):^2)+ sum((i_invec :- j_invec):^2))
}
if (dtype == 1 ) {
S[i,j] = sqrt(sum((i_invec :- j_invec):^2))
}
if (dtype == 2) {
S[i,j] = sqrt(sum((i_outvec :- j_outvec):^2))
}
}
}
return(S)
}
real matrix manhatten_dissimilarity(real matrix net ,real scalar dtype){
S = J(rows(net), cols(net), 0)
for(i = 1; i<= rows(S); i++){
for(j = 1; j<= cols(S); j++){
i_outvec = net[i,.]
i_invec = net[.,i]
j_outvec = net[j,.]
j_invec = net[.,j]
i_outvec[i] = 0
i_outvec[j] = 0
i_invec[i] = 0
i_invec[j] = 0
j_outvec[i] = 0
j_outvec[j] = 0
j_invec[i] = 0
j_invec[j] = 0
if (dtype == 0 ) {
S[i,j] = (sum(abs(i_outvec :- j_outvec))+ sum(abs(i_invec :- j_invec)))
}
if (dtype == 1 ) {
S[i,j] = (sum(abs(i_invec :- j_invec)))
}
if (dtype == 2 ) {
S[i,j] = (sum(abs(i_outvec :- j_outvec)))
}
}
}
return(S)
}
real matrix matches_dissimilarity(real matrix net,real scalar dtype){
S = J(rows(net), cols(net), 0)
for(i = 1; i<= rows(S); i++){
for(j = 1; j<= cols(S); j++){
i_outvec = net[i,.]
i_invec = net[.,i]
j_outvec = net[j,.]
j_invec = net[.,j]
i_outvec[i] = 0
i_outvec[j] = 0
i_invec[i] = 0
i_invec[j] = 0
j_outvec[i] = 0
j_outvec[j] = 0
j_invec[i] = 0
j_invec[j] = 0
i_outvec = (i_outvec :!= 0)
j_outvec = (j_outvec :!= 0)
i_invec = (i_invec :!= 0)
j_invec = (j_invec :!= 0)
if (dtype == 0 ) {
S[i,j] = 1 - (sum(i_outvec :== j_outvec) + sum(i_invec :== j_invec) - 4) / ((cols(i_outvec) - 2) + (rows(i_invec) - 2))
}
if (dtype == 1 ) {
S[i,j] = 1 - (sum(i_invec :== j_invec) - 2) / (cols(i_outvec) - 2)
}
if (dtype == 2 ) {
S[i,j] = 1 - (sum(i_outvec :== j_outvec) - 2) / (rows(i_invec) - 2)
}
}
}
return(S)
}
real matrix jaccard_dissimilarity(real matrix net,real scalar dtype){
S = J(rows(net), cols(net), 0)
for(i = 1; i<= rows(S); i++){
for(j = 1; j<= cols(S); j++){
i_outvec = net[i,.]
i_invec = net[.,i]
j_outvec = net[j,.]
j_invec = net[.,j]
i_outvec[i] = 0
i_outvec[j] = 0
i_invec[i] = 0
i_invec[j] = 0
j_outvec[i] = 0
j_outvec[j] = 0
j_invec[i] = 0
j_invec[j] = 0
i_outvec = (i_outvec :!= 0)
j_outvec = (j_outvec :!= 0)
i_invec = (i_invec :!= 0)
j_invec = (j_invec :!= 0)
if (dtype == 0 ) {
S[i,j] = 1 - (sum((i_outvec :== j_outvec) :* (i_outvec :!= 0) :* (j_outvec:!= 0)) + sum((i_invec :== j_invec) :* (i_invec :!= 0) :* (j_invec:!=0))) / ((sum((i_outvec + j_outvec):!=0)) + (sum((i_invec + j_invec):!=0)))
if (i == 4 & j == 5) {
}
}
if (dtype == 1 ) {
S[i,j] = 1 - (sum((i_invec :== j_invec) :* (i_invec:!=0))) / (sum((i_invec :+ j_invec) :!=0))
}
if (dtype == 2 ) {
S[i,j] = 1 - (sum((i_outvec :== j_outvec) :* (i_outvec:!=0))) / (sum((i_outvec :+ j_outvec):!=0))
}
}
}
return(S)
}
real matrix hamming_dissimilarity(real matrix net,real scalar dtype){
S = J(rows(net), cols(net), 0)
for(i = 1; i<= rows(S); i++){
for(j = 1; j<= cols(S); j++){
i_outvec = net[i,.]
i_invec = net[.,i]
j_outvec = net[j,.]
j_invec = net[.,j]
i_outvec[i] = 0
i_outvec[j] = 0
i_invec[i] = 0
i_invec[j] = 0
j_outvec[i] = 0
j_outvec[j] = 0
j_invec[i] = 0
j_invec[j] = 0
i_outvec = (i_outvec :!= 0)
j_outvec = (j_outvec :!= 0)
i_invec = (i_invec :!= 0)
j_invec = (j_invec :!= 0)
if (dtype == 0 ) {
S[i,j] = (sum(i_outvec :!= j_outvec) + sum(i_invec :!= j_invec))
}
if (dtype == 1 ) {
S[i,j] = (sum(i_invec :!= j_invec))
}
if (dtype == 2 ) {
S[i,j] = (sum(i_outvec :!= j_outvec))
}
}
}
return(S)
}
end
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/arlionn/nwcommands.git
git@gitee.com:arlionn/nwcommands.git
arlionn
nwcommands
nwcommands
master

Search