代码拉取完成,页面将自动刷新
*! lasso2_p 1.0.06 14oct2019
*! lassopack package 1.4.2
*! authors aa/ms
*
* post-estimation predict for both lasso2 and cvlasso.
*
* Updates (release date):
* 1.0.02 (5apr2018 - not released)
* Code cleaning. Removed old, dysfunctional 'pe' option.
* 1.0.03 (08nov2018)
* Replaced "postest" option with name "postresults"; legacy support for postest.
* Added support for lic().
* Changed structure and added warning messages.
* 1.0.04 (22nov2018)
* fixed bug: ols in 'predict ... , lambda() ols' had no effect
* 1.0.05 (9oct2019)
* added proper support for fe
* noisily now shows beta vector
program define lasso2_p, rclass
syntax namelist(min=1 max=2) [if] [in] [, lse lopt NOIsily POSTRESults POSTEst lic(string) ///
Lambda(numlist >0 max=1) ///
LID(numlist integer max=1) ///
* ///
]
*** legacy option postest replaced by postresults
if "`postest'" != "" {
local postresults postresults
di as err "'postest' option has been renamed to 'postresults'. Please use 'postresults' instead."
}
*
if "`noisily'"=="" {
local qui qui
}
*
local cmd `e(cmd)'
local lcount `e(lcount)'
// lasso2
if ("`cmd'"=="lasso2") {
if (`lcount'>1) & ("`lic'`lambda'`lid'"=="") {
di as err "No lambda specified. Use lic(), lambda() or lid() option."
di as err "Alternatively, use lic() with postres in the previous lasso2 call."
exit 198
}
else if (`lcount'>1) & ("`lic'"!="") {
if ("`postresults'"=="") {
tempname m
qui estimates store `m'
}
// postresults option ensures that lasso2 results are being posted
lasso2, lic(`lic') postresults
// run predict command
_lasso2_p `namelist' `if' `in', `qui' `options'
if ("`postresults'"=="") {
qui estimates restore `m'
}
}
else {
// cases: lcount = 1
// or lcount > 1 with lambda() or lid()
_lasso2_p `namelist' `if' `in', `qui' `options' `postresults' lambda(`lambda') lid(`lid')
}
}
else if ("`cmd'"=="cvlasso") { // cvlasso
if ("`lse'`lopt'"=="") {
di as "lse or lopt required."
exit 198
}
else {
if ("`postresults'"=="") {
tempname m
qui estimates store `m'
}
// return lasso2 results with lse or lopt
// postresults option ensures that lasso2 results are being posted
cvlasso, `lse' `lopt' postresults
// run predict command
_lasso2_p `namelist' `if' `in', `qui' `options'
if ("`postresults'"=="") {
qui estimates restore `m'
}
}
}
end
// program for calculating xb/r
program define _lasso2_p, rclass
// this program handes three cases:
// (a) lcount = 1
// (b) lcount > 1 with lambda() -- with or without approximation
// (c) lcount > 1 with lid()
syntax namelist(min=1 max=2) [if] [in], ///
///
[XB /// [default]
Residuals U E UE XBU ///
///
Lambda(numlist >0 max=1) /// Lambda value
LID(numlist integer max=1) /// Lambda ID
///
///
ols /// use post-OLS coefficients
///
APPRox /// use linear approximation
qui /// display estimation output
POSTRESults ///
]
* create variable here
tokenize `namelist'
if "`2'"=="" { // only new varname provided
local varlist `1'
}
else { // datatype also provided
local vtype `1'
local varlist `2'
}
*
*** after cross-validation
local command=e(cmd)
marksample touse, novarlist
*** warning messages
local fe = `e(fe)'
if ("`xb'`residuals'`u'`e'`ue'`xbu'"=="") {
di as gr "No xb or residuals options specified. Assume xb (fitted values)."
local xb xb
}
if (("`u'`e'`ue'`xbu'"!="") & (`fe'!=1)) {
di as err "u, e, ue and xbu only supported after fe"
exit 198
}
else if `fe'==1 {
* xtset is required for FEs so this check should never fail
cap xtset
if _rc {
di as err "internal error - data not xtset"
exit 499
}
local panelvar `r(panelvar)'
local timevar `r(timevar)'
}
if `: word count `u' `e' `ue' `xbu' ' > 1 {
di as err "only one allowed: u, e or ue"
exit 198
}
if (("`residuals'"!="") & (`fe'==1)) {
di as err "residuals option not allowed after fe; select u, e or ue."
exit 198
}
*
*** obtain beta-hat
local lcount = e(lcount)
tempname betaused
if (`lcount'==1) { // only one lambda
*** syntax checks
if ("`lambda'"!="") {
di as error "Warning: lambda() option is ignored."
}
if ("`lid'"!="") {
di as error "Warning: lid option is ignored."
}
if ("`approx'"!="") {
di as error "Warning: approx option is ignored."
}
if ("`noisely'"!="") {
di as err "Warning: noisely option is ignored."
}
*** for return
local lambda = e(lambda)
*** lasso or post-lasso?
if ("`ols'"=="") {
di as text "Use e(b) from previous lasso2 estimation (lambda=`lambda')."
mat `betaused' = e(b)
}
else {
di as text "Use e(betaOLS) from previous lasso2 estimation (lambda=`lambda')."
mat `betaused' = e(betaOLS)
}
*
}
else { // list of lambdas
// either lid or lambda() option required.
if ("`lambda'"=="") & ("`lid'"=="") {
di as error "lambda() or lid() option required."
exit 198
}
*
if ("`lambda'"!="") & ("`approx'"!="") { // linear approximation
di as text "Use linear approximation based on two closest lambda values."
*** checks
if (`e(alpha)'!=1) {
di as error "Warning: Linear approximation only exact for Lasso."
}
if ("`ols'"!="") {
di as error "Post option not supported with approx."
}
*
*** check if lambda in range
tempname lambdas betas
mat `lambdas'=e(lambdamat)
mat `betas' = e(betas)
local lmax = e(lmax)
local lmin = e(lmin)
if (`lambda' < `lmin') | (`lambda' > `lmax') {
di as error "Lamba is not in range. `lmin'<=Lambda<=`lmax' is required."
exit 198
}
*
*** find smallest/largest matrix value larger/smaller
*** than the lambda specified by user
local j=2
local lminus=`lmax'
while ((`lminus'>=`lambda') & (`j'<=`lcount')) {
local lplusid = `j'-1
local lminusid = `j'
local lplus = `lambdas'[`lplusid',1]
local lminus = `lambdas'[`lminusid',1]
local j=`j'+1
}
*
*** extract corresponding beta vectors
local xdim = colsof(`betas')
tempname betaplus betaminus
mat `betaplus' = `betas'[`lplusid',1..`xdim']
mat `betaminus' = `betas'[`lminusid',1..`xdim']
*** approximate beta
local Lconstant = (`lplus'-`lambda')/(`lambda'-`lminus')
tempname betaused
mat `betaused' = (`betaplus'+`betaminus'*`Lconstant')/(1+`Lconstant')
return scalar lplus=`lplus'
return scalar lminus=`lminus'
return scalar lplusid=`lplusid'
return scalar lminusid=`lminusid'
}
else if ("`lid'"!="") { // extract beta using lambda is
*** syntax checks
if ("`ols'"!="") {
di as error "Warning: postols option not supported with lid."
}
if ("`approx'"!="") {
di as error "Warning: approx option ignored."
}
*
tempname lambdas betas betaused
mat `betas' = e(betas)
mat `lambdas'=e(lambdamat)
local xdim = colsof(`betas')
local lcount=rowsof(`lambdas')
if (`lid'>`lcount') {
di as error "lid out of range"
exit 198
}
mat `betaused' = `betas'[`lid',1..`xdim']
//local estimator "Lasso"
local lambda = `lambdas'[`lid',1]
di as text "Use lambda with id=`lid'. lambda=`lambda'."
}
else if ("`lambda'"!="") & ("`approx'"=="") { // re-estimate
*** this is used after cvlasso or lasso2 (if lcount>1)
// store e() items
if ("`postresults'"=="") {
tempname origest
estimates store `origest'
}
*** do estimation (using replay syntax)
di as text "Re-estimate model with lambda=`lambda'."
lasso2, newlambda(`lambda')
if `e(s0)'==0 {
di as err "No variables selected."
exit 498
}
// get the beta used for prediction
if ("`ols'"=="") {
di as text "Use e(b)."
mat `betaused' = e(b)
}
else {
di as text "Use e(betaOLS)."
mat `betaused' = e(betaOLS)
}
*
if ("`postresults'"=="") {
qui estimates restore `origest'
}
//return matrix Ups = `Upsused'
}
else {
di as err "internal error"
exit 1
}
}
*
*** obtain prediction/residuals
local depvar `e(depvar)'
if "`depvar'"=="" {
di as err "internal lasso2_p error. no depvar found."
}
tempvar xbvar esample res
qui gen byte `esample' = e(sample)
qui matrix score `vtype' `xbvar' = `betaused' if `touse'
if ("`xb'"!="") {
// enter if standard or FE
if (`fe'==1) {
* need to add constant
qui gen `vtype' `res' = `depvar' - `xbvar' if `esample'
qui sum `res' if `esample', meanonly
local acons = `r(mean)'
}
else {
local acons = 0
}
gen `vtype' `varlist' = `xbvar' + `acons' `if'
label var `varlist' "Predicted values"
}
else if ("`residuals'"!="") {
// enter if standard only
gen `vtype' `varlist' = `depvar' - `xbvar' `if'
label var `varlist' "Residuals"
}
else if ("`u'"!="") {
// enter if FE only
// fixed effect component u
* "if" ignored
if ("`if'"!="") {
di as err "Warning: if condition ignored. Residuals calculated for estimation sample."
}
gen `vtype' `res' = `depvar' - `xbvar' if `esample'
* first get combined residuals u+e and put in `varlist'
qui sum `res' if `esample', meanonly
qui gen `vtype' `varlist' = `res' - `r(mean)' if `esample'
* now de-factor combined residuals and put in `res'
lassoutils `res', fe(`panelvar') touse(`esample') tvarlist(`res') `noftools'
* u = ue - e
qui replace `varlist' = `varlist' - `res' if `esample'
label var `varlist' "Residuals u(i)"
}
else if ("`e'"!="") {
// enter if FE only
// idiosyncratic component e
* "if" ignored
if ("`if'"!="") {
di as err "Warning: if condition ignored. Residuals calculated for estimation sample."
}
qui gen `vtype' `res' = `depvar' - `xbvar' if `esample'
* de-factor combined residuals
lassoutils `res', fe(`panelvar') touse(`esample') tvarlist(`res') `noftools'
gen `vtype' `varlist' = `res' if `esample'
label var `varlist' "Residuals e(it)"
}
else if ("`ue'"!="") {
// enter if FE only
// combined residual u+e
qui gen `vtype' `res' = `depvar' - `xbvar' `if'
* center combined residuals
qui sum `res' if `esample', meanonly
gen `vtype' `varlist' = `res' - `r(mean)' `if'
label var `varlist' "(Centered) Combined residuals u(i) + e(it)"
}
else if ("`xbu'"!="") {
// enter if FE only
// fixed effect component u + xb + constant = y - e = prediction including fixed effect
* "if" ignored
if ("`if'"!="") {
di as err "Warning: if condition ignored. Residuals calculated for estimation sample."
}
qui gen `vtype' `res' = `depvar' - `xbvar' if `esample'
* de-factor combined residuals
lassoutils `res', fe(`panelvar') touse(`esample') tvarlist(`res') `noftools'
gen `vtype' `varlist' = `depvar' - `res' if `esample'
label var `varlist' "Prediction including fixed effect u(i)"
}
else {
di as err "internal lasso2_p error"
exit 198
}
*
`qui' di "Beta used for predict:"
`qui' mat list `betaused', noblank noheader
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。