1 Star 0 Fork 0

AlimTech/tensorflow-yolov3

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 9.54 KB
一键复制 编辑 原始数据 按行查看 历史
YunYang1994 提交于 2019-05-20 08:10 . I hate tensorflow
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : train.py
# Author : YunYang1994
# Created date: 2019-02-28 17:50:26
# Description :
#
#================================================================
import os
import time
import shutil
import numpy as np
import tensorflow as tf
import core.utils as utils
from tqdm import tqdm
from core.dataset import Dataset
from core.yolov3 import YOLOV3
from core.config import cfg
class YoloTrain(object):
def __init__(self):
self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
self.num_classes = len(self.classes)
self.learn_rate_init = cfg.TRAIN.LEARN_RATE_INIT
self.learn_rate_end = cfg.TRAIN.LEARN_RATE_END
self.first_stage_epochs = cfg.TRAIN.FISRT_STAGE_EPOCHS
self.second_stage_epochs = cfg.TRAIN.SECOND_STAGE_EPOCHS
self.warmup_periods = cfg.TRAIN.WARMUP_EPOCHS
self.initial_weight = cfg.TRAIN.INITIAL_WEIGHT
self.time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time()))
self.moving_ave_decay = cfg.YOLO.MOVING_AVE_DECAY
self.max_bbox_per_scale = 150
self.train_logdir = "./data/log/train"
self.trainset = Dataset('train')
self.testset = Dataset('test')
self.steps_per_period = len(self.trainset)
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
with tf.name_scope('define_input'):
self.input_data = tf.placeholder(dtype=tf.float32, name='input_data')
self.label_sbbox = tf.placeholder(dtype=tf.float32, name='label_sbbox')
self.label_mbbox = tf.placeholder(dtype=tf.float32, name='label_mbbox')
self.label_lbbox = tf.placeholder(dtype=tf.float32, name='label_lbbox')
self.true_sbboxes = tf.placeholder(dtype=tf.float32, name='sbboxes')
self.true_mbboxes = tf.placeholder(dtype=tf.float32, name='mbboxes')
self.true_lbboxes = tf.placeholder(dtype=tf.float32, name='lbboxes')
self.trainable = tf.placeholder(dtype=tf.bool, name='training')
with tf.name_scope("define_loss"):
self.model = YOLOV3(self.input_data, self.trainable)
self.net_var = tf.global_variables()
self.giou_loss, self.conf_loss, self.prob_loss = self.model.compute_loss(
self.label_sbbox, self.label_mbbox, self.label_lbbox,
self.true_sbboxes, self.true_mbboxes, self.true_lbboxes)
self.loss = self.giou_loss + self.conf_loss + self.prob_loss
with tf.name_scope('learn_rate'):
self.global_step = tf.Variable(1.0, dtype=tf.float64, trainable=False, name='global_step')
warmup_steps = tf.constant(self.warmup_periods * self.steps_per_period,
dtype=tf.float64, name='warmup_steps')
train_steps = tf.constant( (self.first_stage_epochs + self.second_stage_epochs)* self.steps_per_period,
dtype=tf.float64, name='train_steps')
self.learn_rate = tf.cond(
pred=self.global_step < warmup_steps,
true_fn=lambda: self.global_step / warmup_steps * self.learn_rate_init,
false_fn=lambda: self.learn_rate_end + 0.5 * (self.learn_rate_init - self.learn_rate_end) *
(1 + tf.cos(
(self.global_step - warmup_steps) / (train_steps - warmup_steps) * np.pi))
)
global_step_update = tf.assign_add(self.global_step, 1.0)
with tf.name_scope("define_weight_decay"):
moving_ave = tf.train.ExponentialMovingAverage(self.moving_ave_decay).apply(tf.trainable_variables())
with tf.name_scope("define_first_stage_train"):
self.first_stage_trainable_var_list = []
for var in tf.trainable_variables():
var_name = var.op.name
var_name_mess = str(var_name).split('/')
if var_name_mess[0] in ['conv_sbbox', 'conv_mbbox', 'conv_lbbox']:
self.first_stage_trainable_var_list.append(var)
first_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
var_list=self.first_stage_trainable_var_list)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
with tf.control_dependencies([first_stage_optimizer, global_step_update]):
with tf.control_dependencies([moving_ave]):
self.train_op_with_frozen_variables = tf.no_op()
with tf.name_scope("define_second_stage_train"):
second_stage_trainable_var_list = tf.trainable_variables()
second_stage_optimizer = tf.train.AdamOptimizer(self.learn_rate).minimize(self.loss,
var_list=second_stage_trainable_var_list)
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
with tf.control_dependencies([second_stage_optimizer, global_step_update]):
with tf.control_dependencies([moving_ave]):
self.train_op_with_all_variables = tf.no_op()
with tf.name_scope('loader_and_saver'):
self.loader = tf.train.Saver(self.net_var)
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=10)
with tf.name_scope('summary'):
tf.summary.scalar("learn_rate", self.learn_rate)
tf.summary.scalar("giou_loss", self.giou_loss)
tf.summary.scalar("conf_loss", self.conf_loss)
tf.summary.scalar("prob_loss", self.prob_loss)
tf.summary.scalar("total_loss", self.loss)
logdir = "./data/log/"
if os.path.exists(logdir): shutil.rmtree(logdir)
os.mkdir(logdir)
self.write_op = tf.summary.merge_all()
self.summary_writer = tf.summary.FileWriter(logdir, graph=self.sess.graph)
def train(self):
self.sess.run(tf.global_variables_initializer())
try:
print('=> Restoring weights from: %s ... ' % self.initial_weight)
self.loader.restore(self.sess, self.initial_weight)
except:
print('=> %s does not exist !!!' % self.initial_weight)
print('=> Now it starts to train YOLOV3 from scratch ...')
self.first_stage_epochs = 0
for epoch in range(1, 1+self.first_stage_epochs+self.second_stage_epochs):
if epoch <= self.first_stage_epochs:
train_op = self.train_op_with_frozen_variables
else:
train_op = self.train_op_with_all_variables
pbar = tqdm(self.trainset)
train_epoch_loss, test_epoch_loss = [], []
for train_data in pbar:
_, summary, train_step_loss, global_step_val = self.sess.run(
[train_op, self.write_op, self.loss, self.global_step],feed_dict={
self.input_data: train_data[0],
self.label_sbbox: train_data[1],
self.label_mbbox: train_data[2],
self.label_lbbox: train_data[3],
self.true_sbboxes: train_data[4],
self.true_mbboxes: train_data[5],
self.true_lbboxes: train_data[6],
self.trainable: True,
})
train_epoch_loss.append(train_step_loss)
self.summary_writer.add_summary(summary, global_step_val)
pbar.set_description("train loss: %.2f" %train_step_loss)
for test_data in self.testset:
test_step_loss = self.sess.run( self.loss, feed_dict={
self.input_data: test_data[0],
self.label_sbbox: test_data[1],
self.label_mbbox: test_data[2],
self.label_lbbox: test_data[3],
self.true_sbboxes: test_data[4],
self.true_mbboxes: test_data[5],
self.true_lbboxes: test_data[6],
self.trainable: False,
})
test_epoch_loss.append(test_step_loss)
train_epoch_loss, test_epoch_loss = np.mean(train_epoch_loss), np.mean(test_epoch_loss)
ckpt_file = "./checkpoint/yolov3_test_loss=%.4f.ckpt" % test_epoch_loss
log_time = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time()))
print("=> Epoch: %2d Time: %s Train loss: %.2f Test loss: %.2f Saving %s ..."
%(epoch, log_time, train_epoch_loss, test_epoch_loss, ckpt_file))
self.saver.save(self.sess, ckpt_file, global_step=epoch)
if __name__ == '__main__': YoloTrain().train()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/alimtech/tensorflow-yolov3.git
git@gitee.com:alimtech/tensorflow-yolov3.git
alimtech
tensorflow-yolov3
tensorflow-yolov3
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385