代码拉取完成,页面将自动刷新
# 缺陷坐标xml转txt
import os
import xml.etree.ElementTree as ET
import os
import random
classes = ["smoke"] # 输入类别名称,必须与xml标注名称一致
def convert(size, box):
print(size, box)
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
print(image_id)
in_file = open(r'./data/Annotations/%s' % (image_id), 'rb') # 读取xml文件路径
out_file = open('./data/labels/%s.txt' % (image_id.split('.')[0]), 'w') # 需要保存的txt格式文件路径
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls not in classes:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
image_ids_train = os.listdir('./data/Annotations') # 读取xml文件名索引
for image_id in image_ids_train:
print(image_id)
convert_annotation(image_id)
trainval_percent = 0.1 # 可自行进行调节
train_percent = 1
xmlfilepath = './data/images'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftest = open('./data/test.txt', 'w')
ftrain = open('./data/train.txt', 'w')
for i in list:
name = total_xml[i] + '\n'
if i in trainval:
if i in train:
ftest.write('data/images/' + name)
else:
ftrain.write('data/images/' + name)
ftrain.close()
ftest.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。