代码拉取完成,页面将自动刷新
/*
* Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ALIGNER_RESULT_H_
#define ALIGNER_RESULT_H_
#include <utility>
#include <limits>
#include "mem_ids.h"
#include "ref_coord.h"
#include "read.h"
#include "filebuf.h"
#include "ds.h"
#include "edit.h"
#include "limit.h"
typedef int64_t TAlScore;
#define VALID_AL_SCORE(x) ((x).score_ > MIN_I64)
#define VALID_SCORE(x) ((x) > MIN_I64)
#define INVALIDATE_SCORE(x) ((x) = MIN_I64)
/**
* A generic score object for an alignment. Used for accounting during
* SW and elsewhere. Encapsulates the score, the number of N positions
* and the number gaps in the alignment.
*
* The scale for 'score' is such that a perfect alignment score is 0
* and a score with non-zero penalty is less than 0. So differences
* between scores work as expected, but interpreting an individual
* score (larger is better) as a penalty (smaller is better) requires
* taking the absolute value.
*/
class AlnScore {
public:
/**
* Gapped scores are invalid until proven valid.
*/
inline AlnScore() {
reset();
invalidate();
assert(!valid());
}
/**
* Gapped scores are invalid until proven valid.
*/
inline AlnScore(TAlScore score, int basesAligned, int edits, TAlScore ns, TAlScore gaps) {
score_ = score;
basesAligned_ = basesAligned;
edits_ = edits;
ns_ = ns;
gaps_ = gaps;
assert(valid());
}
/**
* Reset the score.
*/
void reset() {
score_ = basesAligned_ = edits_ = ns_ = gaps_ = 0;
}
/**
* Return an invalid SwScore.
*/
inline static AlnScore INVALID() {
AlnScore s;
s.invalidate();
assert(!s.valid());
return s;
}
/**
* Return true iff this score has a valid value.
*/
inline bool valid() const {
return score_ != MIN_I64;
}
/**
* Make this score invalid (and therefore <= all other scores).
*/
inline void invalidate() {
score_ = MIN_I64;
edits_ = basesAligned_ = std::numeric_limits<int>::min();
ns_ = gaps_ = 0;
assert(!valid());
}
/**
* Increment the number of gaps. If currently invalid, this makes
* the score valid with gaps == 1.
*/
inline void incNs(int nceil) {
if(++ns_ > nceil) {
invalidate();
}
assert_lt(ns_, 0x7fffffff);
}
/**
* Return true iff this score is > score o.
* Note: An "invalid" score is <= all other scores.
*/
inline bool operator>(const AlnScore& o) const {
if(!VALID_AL_SCORE(o)) {
if(!VALID_AL_SCORE(*this)) {
// both invalid
return false;
} else {
// I'm valid, other is invalid
return true;
}
} else if(!VALID_AL_SCORE(*this)) {
// I'm invalid, other is valid
return false;
}
return score_ > o.score_;
}
/**
* Scores are equal iff they're bitwise equal.
*/
inline AlnScore& operator=(const AlnScore& o) {
// Profiling shows many cache misses on following lines
gaps_ = o.gaps_;
basesAligned_ = o.basesAligned_;
ns_ = o.ns_;
edits_ = o.edits_;
score_ = o.score_;
assert_lt(ns_, 0x7fffffff);
return *this;
}
/**
* Scores are equal iff they're bitwise equal.
*/
inline bool operator==(const AlnScore& o) const {
// Profiling shows cache misses on following line
return VALID_AL_SCORE(*this) && VALID_AL_SCORE(o) && score_ == o.score_;
}
/**
* Return true iff the two scores are unequal.
*/
inline bool operator!=(const AlnScore& o) const {
return !(*this == o);
}
/**
* Return true iff this score is >= score o.
*/
inline bool operator>=(const AlnScore& o) const {
if(!VALID_AL_SCORE(o)) {
if(!VALID_AL_SCORE(*this)) {
// both invalid
return false;
} else {
// I'm valid, other is invalid
return true;
}
} else if(!VALID_AL_SCORE(*this)) {
// I'm invalid, other is valid
return false;
}
return score_ >= o.score_;
}
/**
* Return true iff this score is < score o.
*/
inline bool operator<(const AlnScore& o) const {
return !operator>=(o);
}
/**
* Calculate sum of two SwScores.
*/
inline AlnScore operator+(const AlnScore& o) const {
if(!VALID_AL_SCORE(*this)) return *this;
AlnScore s;
s.gaps_ = gaps_ + o.gaps_;
s.basesAligned_ = basesAligned_ + o.basesAligned_;
s.ns_ = ns_ + o.ns_;
s.edits_ = edits_ + o.edits_;
s.score_ = score_ + o.score_;
assert_lt(s.ns_, 0x7fffffff);
return s;
}
/**
* Add given SwScore into this one.
*/
inline AlnScore operator+=(const AlnScore& o) {
if(VALID_AL_SCORE(*this)) {
gaps_ += o.gaps_;
basesAligned_ += o.basesAligned_;
score_ += o.score_;
edits_ += o.edits_;
ns_ += o.ns_;
}
return (*this);
}
TAlScore score() const { return score_; }
TAlScore penalty() const { return -score_; }
TAlScore gaps() const { return gaps_; }
TAlScore ns() const { return ns_; }
int basesAligned() const { return basesAligned_; }
int nedit() const { return edits_; }
// Score accumulated so far (penalties are subtracted starting at 0)
TAlScore score_;
// Number of bases matching between the read and reference
int basesAligned_;
// Edit distance
int edits_;
// Ns accumulated so far. An N opposite a non-gap counts as 1 N
// (even if it's N-to-N)
TAlScore ns_;
// # gaps encountered so far, unless that number exceeds the
// target, in which case the score becomes invalid and therefore <=
// all other scores
TAlScore gaps_;
};
enum {
// This alignment is one of a pair of alignments that form a concordant
// alignment for a read
ALN_FLAG_PAIR_CONCORD_MATE1 = 1,
ALN_FLAG_PAIR_CONCORD_MATE2,
// This alignment is one of a pair of alignments that form a discordant
// alignment for a read
ALN_FLAG_PAIR_DISCORD_MATE1,
ALN_FLAG_PAIR_DISCORD_MATE2,
// This is an unpaired alignment but the read in question is a pair;
// usually, this happens because the read had no reportable paired-end
// alignments
ALN_FLAG_PAIR_UNPAIRED_MATE1,
ALN_FLAG_PAIR_UNPAIRED_MATE2,
// This is an unpaired alignment of an unpaired read
ALN_FLAG_PAIR_UNPAIRED
};
/**
* Encapsulates some general information about an alignment that doesn't belong
* in AlnRes. Specifically:
*
* 1. Whether the alignment is paired
* 2. If it's paried, whether it's concordant or discordant
* 3. Whether this alignment was found after the paired-end categories were
* maxed out
* 4. Whether the relevant unpaired category was maxed out
*/
class AlnFlags {
public:
AlnFlags() {
init(
ALN_FLAG_PAIR_UNPAIRED,
false, // canMax
false, // maxed
false, // maxedPair
false, // nfilt
false, // scfilt
false, // lenfilt
false, // qcfilt
false, // mixedMode
false, // primary
false, // oppAligned
false, // oppFw
false, // scUnMapped
false); // xeq
}
AlnFlags(
int pairing,
bool canMax,
bool maxed,
bool maxedPair,
bool nfilt,
bool scfilt,
bool lenfilt,
bool qcfilt,
bool mixedMode,
bool primary,
bool oppAligned, // opposite mate aligned?
bool oppFw, // opposite mate aligned forward?
bool scUnMapped,
bool xeq)
{
init(pairing, canMax, maxed, maxedPair, nfilt, scfilt,
lenfilt, qcfilt, mixedMode, primary, oppAligned,
oppFw, scUnMapped, xeq);
}
/**
* Initialize given values for all settings.
*/
void init(
int pairing,
bool canMax,
bool maxed,
bool maxedPair,
bool nfilt,
bool scfilt,
bool lenfilt,
bool qcfilt,
bool mixedMode,
bool primary,
bool oppAligned,
bool oppFw,
bool scUnMapped,
bool xeq)
{
assert_gt(pairing, 0);
assert_leq(pairing, ALN_FLAG_PAIR_UNPAIRED);
pairing_ = pairing;
canMax_ = canMax;
maxed_ = maxed;
maxedPair_ = maxedPair;
nfilt_ = nfilt;
scfilt_ = scfilt;
lenfilt_ = lenfilt;
qcfilt_ = qcfilt;
mixedMode_ = mixedMode;
primary_ = primary;
oppAligned_ = oppAligned;
oppFw_ = oppFw;
scUnMapped_ = scUnMapped;
xeq_ = xeq;
}
/**
* Return true iff this alignment is from a paired-end read.
*/
bool partOfPair() const {
assert_gt(pairing_, 0);
return pairing_ < ALN_FLAG_PAIR_UNPAIRED;
}
#ifndef NDEBUG
/**
* Check that the flags are internally consistent.
*/
bool repOk() const {
assert(partOfPair() || !maxedPair_);
return true;
}
#endif
/**
* Print out string representation of YF:i flag for indicating whether and
* why the mate was filtered.
*/
bool printYF(BTString& o, bool first) const;
/**
* Print out string representation of YM:i flag for indicating with the
* mate per se aligned repetitively.
*/
void printYM(BTString& o) const;
/**
* Print out string representation of YM:i flag for indicating with the
* pair containing the mate aligned repetitively.
*/
void printYP(BTString& o) const;
/**
* Print out string representation of these flags.
*/
void printYT(BTString& o) const;
inline int pairing() const { return pairing_; }
inline bool maxed() const { return maxed_; }
inline bool maxedPair() const { return maxedPair_; }
/**
* Return true iff the alignment is not the primary alignment; i.e. not the
* first reported alignment for the fragment.
*/
inline bool isPrimary() const {
return primary_;
}
/**
* Set the primary flag.
*/
void setPrimary(bool primary) {
primary_ = primary;
}
/**
* Return whether both paired and unpaired alignments are considered for
* pairs & their constituent mates
*/
inline bool isMixedMode() const {
return mixedMode_;
}
/**
* Return true iff the alignment params are such that it's possible for a
* read to be suppressed for being repetitive.
*/
inline bool canMax() const {
return canMax_;
}
/**
* Return true iff the alignment was filtered out.
*/
bool filtered() const {
return !nfilt_ || !scfilt_ || !lenfilt_ || !qcfilt_;
}
/**
* Return true iff the read is mate #1 of a pair, regardless of whether it
* aligned as a pair.
*/
bool readMate1() const {
return pairing_ == ALN_FLAG_PAIR_CONCORD_MATE1 ||
pairing_ == ALN_FLAG_PAIR_DISCORD_MATE1 ||
pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE1;
}
/**
* Return true iff the read is mate #2 of a pair, regardless of whether it
* aligned as a pair.
*/
bool readMate2() const {
return pairing_ == ALN_FLAG_PAIR_CONCORD_MATE2 ||
pairing_ == ALN_FLAG_PAIR_DISCORD_MATE2 ||
pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE2;
}
/**
* Return true iff the read aligned as either mate of a concordant pair.
*/
bool alignedConcordant() const {
return pairing_ == ALN_FLAG_PAIR_CONCORD_MATE1 ||
pairing_ == ALN_FLAG_PAIR_CONCORD_MATE2;
}
/**
* Return true iff the read aligned as either mate of a discordant pair.
*/
bool alignedDiscordant() const {
return pairing_ == ALN_FLAG_PAIR_DISCORD_MATE1 ||
pairing_ == ALN_FLAG_PAIR_DISCORD_MATE2;
}
/**
* Return true iff the read aligned as either mate of a pair, concordant or
* discordant.
*/
bool alignedPaired() const {
return alignedConcordant() && alignedDiscordant();
}
/**
* Return true iff the read aligned as an unpaired read.
*/
bool alignedUnpaired() const {
return pairing_ == ALN_FLAG_PAIR_UNPAIRED;
}
/**
* Return true iff the read aligned as an unpaired mate from a paired read.
*/
bool alignedUnpairedMate() const {
return pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE1 ||
pairing_ == ALN_FLAG_PAIR_UNPAIRED_MATE2;
}
bool mateAligned() const {
return oppAligned_;
}
bool isOppFw() const {
return oppFw_;
}
bool scUnMapped() const {
return scUnMapped_;
}
bool xeq() const {
return xeq_;
}
protected:
// See ALN_FLAG_PAIR_* above
int pairing_;
// True iff the alignment params are such that it's possible for a read to
// be suppressed for being repetitive
bool canMax_;
// This alignment is sampled from among many alignments that, taken
// together, cause this mate to align non-uniquely
bool maxed_;
// The paired-end read of which this mate is part has repetitive concordant
// alignments
bool maxedPair_;
bool nfilt_; // read/mate filtered b/c proportion of Ns exceeded ceil
bool scfilt_; // read/mate filtered b/c length can't provide min score
bool lenfilt_; // read/mate filtered b/c less than or equal to seed mms
bool qcfilt_; // read/mate filtered by upstream qc
// Whether both paired and unpaired alignments are considered for pairs &
// their constituent mates
bool mixedMode_;
// The read is the primary read
bool primary_;
// True iff the opposite mate aligned
bool oppAligned_;
// True if opposite mate aligned in the forward direction
bool oppFw_;
// True if soft clipped bases are considered unmapped w/r/t TLEN
bool scUnMapped_;
bool xeq_;
};
static inline ostream& operator<<(ostream& os, const AlnScore& o) {
os << o.score();
return os;
}
// Forward declaration
class BitPairReference;
// A given AlnRes can be one of these three types
enum {
ALN_RES_TYPE_UNPAIRED = 1, // unpaired alignment
ALN_RES_TYPE_UNPAIRED_MATE1, // mate #1 in pair, aligned unpaired
ALN_RES_TYPE_UNPAIRED_MATE2, // mate #2 in pair, aligned unpaired
ALN_RES_TYPE_MATE1, // mate #1 in paired-end alignment
ALN_RES_TYPE_MATE2 // mate #2 in paired-end alignment
};
/**
* Seed alignment summary
*/
struct SeedAlSumm {
SeedAlSumm() { reset(); }
void reset() {
nonzTot = nonzFw = nonzRc = 0;
nrangeTot = nrangeFw = nrangeRc = 0;
neltTot = neltFw = neltRc = 0;
minNonzRangeFw = minNonzRangeRc = 0;
maxNonzRangeFw = maxNonzRangeRc = 0;
minNonzEltFw = minNonzEltRc = 0;
maxNonzEltFw = maxNonzEltRc = 0;
}
size_t nonzTot;
size_t nonzFw;
size_t nonzRc;
size_t nrangeTot;
size_t nrangeFw;
size_t nrangeRc;
size_t neltTot;
size_t neltFw;
size_t neltRc;
size_t minNonzRangeFw;
size_t minNonzRangeRc;
size_t maxNonzRangeFw;
size_t maxNonzRangeRc;
size_t minNonzEltFw;
size_t minNonzEltRc;
size_t maxNonzEltFw;
size_t maxNonzEltRc;
};
/**
* Encapsulates a stacked alignment, a nice intermediate format for alignments
* from which to left-align gaps, print CIGAR strings, and print MD:Z strings.
*/
class StackedAln {
public:
StackedAln() :
stackRef_(RES_CAT),
stackRel_(RES_CAT),
stackRead_(RES_CAT),
cigOp_(RES_CAT),
cigRun_(RES_CAT),
mdzOp_(RES_CAT),
mdzChr_(RES_CAT),
mdzRun_(RES_CAT)
{
reset();
}
/**
* Reset to an uninitialized state.
*/
void reset() {
inited_ = false;
trimLS_ = trimLH_ = trimRS_ = trimRH_ = 0;
stackRef_.clear();
stackRel_.clear();
stackRead_.clear();
cigDistMm_ = cigCalc_ = false;
cigOp_.clear();
cigRun_.clear();
mdzCalc_ = false;
mdzOp_.clear();
mdzChr_.clear();
mdzRun_.clear();
}
/**
* Return true iff the stacked alignment has been initialized.
*/
bool inited() const { return inited_; }
/**
* Initialized the stacked alignment with respect to a read string, a list of
* edits (expressed left-to-right), and integers indicating how much hard and
* soft trimming has occurred on either end of the read.
*
* s: read sequence
* ed: all relevant edits, including ambiguous nucleotides
* trimLS: # bases soft-trimmed from LHS
* trimLH: # bases hard-trimmed from LHS
* trimRS: # bases soft-trimmed from RHS
* trimRH: # bases hard-trimmed from RHS
*/
void init(
const BTDnaString& s,
const EList<Edit>& ed,
size_t trimLS,
size_t trimLH,
size_t trimRS,
size_t trimRH);
/**
* Left-align all the gaps. If this changes the alignment and the CIGAR or
* MD:Z strings have already been calculated, this renders them invalid.
*
* We left-align gaps with in the following way: for each gap, we check
* whether the character opposite the rightmost gap character is the same
* as the character opposite the character just to the left of the gap. If
* this is the case, we can slide the gap to the left and make the
* rightmost position previously covered by the gap into a non-gap.
*
* This scheme allows us to push the gap past a mismatch. BWA does seem to
* allow this. It's not clear that Bowtie 2 should, since moving the
* mismatch could cause a mismatch with one base quality to be replaced
* with a mismatch with a different base quality.
*/
void leftAlign(bool pastMms);
/**
* Build the CIGAR list, if it hasn't already built. Returns true iff it
* was built for the first time.
*/
bool buildCigar(bool xeq);
/**
* Build the MD:Z list, if it hasn't already built. Returns true iff it
* was built for the first time.
*/
bool buildMdz();
/**
* Write a CIGAR representation of the alignment to the given string and/or
* char buffer.
*/
void writeCigar(BTString* o, char* oc) const;
/**
* Write an MD:Z representation of the alignment to the given string and/or
* char buffer.
*/
void writeMdz(BTString* o, char* oc) const;
/**
* Check internal consistency.
*/
#ifndef NDEBUG
bool repOk() const {
if(inited_) {
assert_eq(stackRef_.size(), stackRead_.size());
assert_eq(stackRef_.size(), stackRel_.size());
}
return true;
}
#endif
protected:
bool inited_; // true iff stacked alignment is initialized
size_t trimLS_; // amount soft-trimmed from the LHS
size_t trimLH_; // amount hard-trimmed from the LHS
size_t trimRS_; // amount soft-trimmed from the RHS
size_t trimRH_; // amount hard-trimmed from the RHS
EList<char> stackRef_; // reference characters
EList<char> stackRel_; // bars relating reference to read characters
EList<char> stackRead_; // read characters
bool cigDistMm_; // distinguish between =/X, rather than just M
bool cigCalc_; // whether we've calculated CIGAR ops/runs
EList<char> cigOp_; // CIGAR operations
EList<size_t> cigRun_; // CIGAR run lengths
bool mdzCalc_; // whether we've calculated MD:Z ops/runs
EList<char> mdzOp_; // MD:Z operations
EList<char> mdzChr_; // MD:Z operations
EList<size_t> mdzRun_; // MD:Z run lengths
};
/**
* Encapsulates an alignment result. The result comprises:
*
* 1. All the nucleotide edits for both mates ('ned').
* 2. All "edits" where an ambiguous reference char is resolved to an
* unambiguous char ('aed').
* 3. The score for the alginment, including summary information about the
* number of gaps and Ns involved.
* 4. The reference id, strand, and 0-based offset of the leftmost character
* involved in the alignment.
* 5. Information about trimming prior to alignment and whether it was hard or
* soft.
* 6. Information about trimming during alignment and whether it was hard or
* soft. Local-alignment trimming is usually soft when aligning nucleotide
* reads.
*
* Note that the AlnRes, together with the Read and an AlnSetSumm (*and* the
* opposite mate's AlnRes and Read in the case of a paired-end alignment),
* should contain enough information to print an entire alignment record.
*
* TRIMMING
*
* Accounting for trimming is tricky. Trimming affects:
*
* 1. The values of the trim* and pretrim* fields.
* 2. The offsets of the Edits in the EList<Edit>s.
* 3. The read extent, if the trimming is soft.
* 4. The read extent and the read sequence and length, if trimming is hard.
*
* Handling 1. is not too difficult. 2., 3., and 4. are handled in setShape().
*/
class AlnRes {
public:
AlnRes() :
ned_(RES_CAT),
aed_(RES_CAT)
{
reset();
}
/**
* Clear all contents.
*/
void reset();
/**
* Reverse all edit lists.
*/
void reverseEdits() {
ned_.reverse();
aed_.reverse();
}
/**
* Invert positions of edits so that they're with respect to the other end
* of the alignment. The assumption is that the .pos fields of the edits
* in the ned_/aed_/ced_ structures are offsets with respect to the first
* aligned character (i.e. after all trimming).
*/
void invertEdits() {
assert(shapeSet_);
assert_gt(rdlen_, 0);
assert_gt(rdrows_, 0);
Edit::invertPoss(ned_, rdexrows_, false);
Edit::invertPoss(aed_, rdexrows_, false);
}
/**
* Return true iff no result has been installed.
*/
bool empty() const {
if(!VALID_AL_SCORE(score_)) {
assert(ned_.empty());
assert(aed_.empty());
assert(!refcoord_.inited());
assert(!refival_.inited());
return true;
} else {
return false;
}
}
/**
* Return the identifier for the reference that the alignment
* occurred in.
*/
inline TRefId refid() const {
assert(shapeSet_);
return refcoord_.ref();
}
/**
* Return the orientation that the alignment occurred in.
*/
inline int orient() const {
assert(shapeSet_);
return refcoord_.orient();
}
/**
* Return the 0-based offset of the alignment into the reference
* sequence it aligned to.
*/
inline TRefOff refoff() const {
assert(shapeSet_);
return refcoord_.off();
}
/**
* Set arguments to coordinates for the upstream-most and downstream-most
* reference positions involved in the alignment.
*/
inline void getCoords(
Coord& st, // out: install starting coordinate here
Coord& en) // out: install ending coordinate here
const
{
assert(shapeSet_);
st.init(refcoord_);
en.init(refcoord_);
en.adjustOff(refExtent() - 1);
}
/**
* Set arguments to coordinates for the upstream-most and downstream-most
* reference positions covered by the read taking any read trimming into
* account. I.e. if the upstream-most offset involved in an alignment is
* 40 but the read was hard-trimmed by 5 on that end, the inferred
* upstream-most covered position is 35.
*/
inline void getExtendedCoords(
Coord& st, // out: install starting coordinate here
Coord& en, // out: install ending coordinate here
const AlnFlags& flags)
const
{
getCoords(st, en);
// Take trimming into account
if (!flags.scUnMapped()) {
int64_t trim_st = (fw() ? trim5p_ : trim3p_);
int64_t trim_en = (fw() ? trim3p_ : trim5p_);
trim_st += (fw() ? pretrim5p_ : pretrim3p_);
trim_en += (fw() ? pretrim3p_ : pretrim5p_);
st.adjustOff(-trim_st);
en.adjustOff( trim_en);
}
}
/**
* Set the upstream-most reference offset involved in the alignment, and
* the extent of the alignment (w/r/t the reference)
*/
void setShape(
TRefId id, // id of reference aligned to
TRefOff off, // offset of first aligned char into ref seq
TRefOff reflen, // length of reference sequence aligned to
bool fw, // aligned to Watson strand?
size_t rdlen, // length of read after hard trimming, before soft
bool pretrimSoft, // whether trimming prior to alignment was soft
size_t pretrim5p, // # poss trimmed form 5p end before alignment
size_t pretrim3p, // # poss trimmed form 3p end before alignment
bool trimSoft, // whether local-alignment trimming was soft
size_t trim5p, // # poss trimmed form 5p end during alignment
size_t trim3p); // # poss trimmed form 3p end during alignment
/**
* Return true iff the reference chars involved in this alignment result
* are entirely within with given bounds.
*/
bool within(
TRefId id,
TRefOff off,
bool fw,
size_t extent) const
{
if(refcoord_.ref() == id &&
refcoord_.off() >= off &&
refcoord_.off() + refExtent() <= off + extent &&
refcoord_.fw() == fw)
{
return true;
}
return false;
}
/**
* Set alignment score for this alignment.
*/
void setScore(AlnScore score) {
score_ = score;
}
/**
* Set the upstream-most and downstream-most nucleotides.
*/
void setNucs(bool fw, int nup, int ndn) {
nuc5p_ = fw ? nup : ndn;
nuc3p_ = fw ? ndn : nup;
}
/**
* Return the 0-based offset of the leftmost reference position involved in
* the alignment.
*/
const Coord& refcoord() const {
return refcoord_;
}
/**
* Return the 0-based offset of the leftmost reference position involved in
* the alignment.
*/
const Interval& refival() const {
return refival_;
}
/**
* Return the 0-based offset of the leftmost reference position involved in
* the alignment.
*/
Coord& refcoord() {
return refcoord_;
}
/**
* Return true if this alignment is to the Watson strand.
*/
inline bool fw() const {
return refcoord_.fw();
}
AlnScore score() const { return score_; }
AlnScore oscore() const { return oscore_; }
EList<Edit>& ned() { return ned_; }
EList<Edit>& aed() { return aed_; }
const EList<Edit>& ned() const { return ned_; }
const EList<Edit>& aed() const { return aed_; }
size_t readExtent() const { return rdextent_; }
size_t readExtentRows() const { return rdexrows_; }
size_t readLength() const { return rdlen_; }
/**
* Return the number of reference nucleotides involved in the alignment
* (i.e. the number of characters in the inclusive range from the first
* matched-up ref char to the last).
*/
size_t refExtent() const {
return rfextent_;
}
/**
* Return length of reference sequence aligned to.
*/
TRefOff reflen() const {
return reflen_;
}
/**
* Return the number of reference nucleotides in the alignment (i.e. the
* number of characters in the inclusive range from the first matched-up
* ref char to the last).
*/
size_t refNucExtent() const {
return rfextent_;
}
/**
* Print the sequence for the read that aligned using A, C, G and
* T. This will simply print the read sequence (or its reverse
* complement).
*/
void printSeq(
const Read& rd,
const BTDnaString* dns,
BTString& o) const;
/**
* Print the quality string for the read that aligned. This will
* simply print the read qualities (or their reverse).
*/
void printQuals(
const Read& rd,
const BTString* dqs,
BTString& o) const;
/**
* Print a stacked alignment with the reference on top, query on bottom,
* and lines connecting matched-up positions.
*/
void printStacked(
const Read& rd,
std::ostream& o) const
{
printStacked(refcoord_.fw() ? rd.patFw : rd.patRc, o);
}
/**
* Print a stacked alignment with the reference on bottom, query on top,
* and lines connecting matched-up positions.
*/
void printStacked(
const BTDnaString& seq,
std::ostream& o) const
{
Edit::printQAlign(o, seq, ned_);
// Print reference offset below reference string
o << "^" << std::endl;
o << "(" << refcoord_.ref() << "," << refcoord_.off() << ")" << std::endl;
}
#ifndef NDEBUG
/**
* Check that alignment score is internally consistent.
*/
bool repOk() const {
assert(refcoord_.repOk());
if(shapeSet_) {
assert_lt(refoff(), reflen_);
}
assert(refival_.repOk());
assert(VALID_AL_SCORE(score_) || ned_.empty());
assert(VALID_AL_SCORE(score_) || aed_.empty());
assert(empty() || refcoord_.inited());
assert(empty() || refival_.inited());
assert_geq(rdexrows_, rdextent_);
assert(empty() || rdextent_ > 0);
assert(empty() || rfextent_ > 0);
return true;
}
/**
* Check that alignment score is internally consistent.
*/
bool repOk(const Read& rd) const {
assert(Edit::repOk(ned_, refcoord_.fw() ? rd.patFw : rd.patRc,
refcoord_.fw(), trimmed5p(true), trimmed3p(true)));
return repOk();
}
#endif
#ifndef NDEBUG
/**
* Assuming this AlnRes is an alignment for 'rd', check that the
* alignment and 'rd' are compatible with the corresponding
* reference sequence.
*/
bool matchesRef(
const Read& rd,
const BitPairReference& ref,
BTDnaString& rf,
BTDnaString& rdseq,
BTString& qseq,
SStringExpandable<char>& raw_refbuf,
SStringExpandable<uint32_t>& destU32,
EList<bool>& matches);
#endif
/**
* Set information about the alignment parameters that led to this
* alignment.
*/
void setParams(
int seedmms,
int seedlen,
int seedival,
int64_t minsc)
{
seedmms_ = seedmms;
seedlen_ = seedlen;
seedival_ = seedival;
minsc_ = minsc;
}
// Accessors for alignment parameters
int seedmms() const { return seedmms_; }
int seedlen() const { return seedlen_; }
int seedival() const { return seedival_; }
int64_t minScore() const { return minsc_; }
/**
* Is the ith row from the 5' end of the DP table one of the ones
* soft-trimmed away by local alignment?
*/
inline bool trimmedRow5p(size_t i) const {
return i < trim5p_ || rdrows_ - i - 1 < trim3p_;
}
/**
* Is the ith character from the 5' end of read sequence one of the ones
* soft-trimmed away by local alignment?
*/
inline bool trimmedPos5p(size_t i) const {
return i < trim5p_ || rdlen_ - i - 1 < trim3p_;
}
/**
* Is the ith row from the 5' end of the DP table one of the ones that
* survived local-alignment soft trimming?
*/
inline bool alignedRow5p(size_t i) const {
return !trimmedRow5p(i);
}
/**
* Is the ith character from the 5' end of the read sequence one of the
* ones that survived local-alignment soft trimming?
*/
inline bool alignedPos5p(size_t i) const {
return !trimmedPos5p(i);
}
/**
* Return true iff this AlnRes and the given AlnRes overlap. Two AlnRess
* overlap if they share a cell in the overall dynamic programming table:
* i.e. if there exists a read position s.t. that position in both reads
* matches up with the same reference character. E.g., the following
* alignments (drawn schematically as paths through a dynamic programming
* table) are redundant:
*
* a b a b
* \ \ \ \
* \ \ \ \
* \ \ \ \
* ---\ \ \
* \ ---\---
* ---\ \ \
* \ \ \ \
* \ \ \ \
* \ \ \ \
* a b b a
*
* We iterate over each read position that hasn't been hard-trimmed, but
* only overlaps at positions that have also not been soft-trimmed are
* considered.
*/
bool overlap(AlnRes& res);
/**
* Return true iff this read was unpaired to begin with.
*/
inline bool readUnpaired() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_UNPAIRED;
}
/**
* Return true iff this alignment aligned in an unpaired fashion; not part
* of a concordant or discordant pair.
*/
inline bool alignedUnpaired() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_UNPAIRED ||
type_ == ALN_RES_TYPE_UNPAIRED_MATE1 ||
type_ == ALN_RES_TYPE_UNPAIRED_MATE2;
}
/**
* Return true iff this alignment aligned as mate #1 or mate #2 in a pair,
* either concordant or discordant.
*/
inline bool alignedPaired() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_MATE1 ||
type_ == ALN_RES_TYPE_MATE2;
}
/**
* Return true iff this read started as mate #1 in a pair.
*/
inline bool readMate1() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_MATE1 ||
type_ == ALN_RES_TYPE_UNPAIRED_MATE1;
}
/**
* Return true iff this read aligned as mate #1 in a concordant or
* discordant pair.
*/
inline bool alignedMate1() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_MATE1;
}
/**
* Return true iff this alignment aligned as mate #2 in a pair, either
* concordant or discordant.
*/
inline bool readMate2() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_MATE2 ||
type_ == ALN_RES_TYPE_UNPAIRED_MATE2;
}
/**
* Return true iff this read aligned as mate #2 in a concordant or
* discordant pair.
*/
inline bool alignedMate2() const {
assert_gt(type_, 0);
return type_ == ALN_RES_TYPE_MATE2;
}
/**
* Return true iff fragment length is set.
*/
bool isFraglenSet() const {
return fraglenSet_;
}
/**
* Set whether this alignment is unpaired, or is mate #1 or mate #2 in a
* paired-end alignment.
*/
void setMateParams(
int type,
const AlnRes* omate, // alignment result for the opposite mate
const AlnFlags& flags) // flags for this mate
{
assert_gt(type, 0);
type_ = type;
fraglen_ = 0;
if(omate != NULL) {
oscore_ = omate->score_;
// When should we calculate a fragment length here? There are a
// couple reasonable ideas:
// 1. When mates align concordantly
// 2. When both mates align to the same reference string
// BWA seems to do 2., so that's what we'll do here.
bool sameChr = true;
if((sameChr && refcoord_.ref() == omate->refcoord_.ref()) ||
flags.alignedConcordant())
{
setFragmentLength(*omate, flags);
} else {
assert(!isFraglenSet());
}
}
}
/**
* Assuming this alignment and the given alignment are at the extreme ends
* of a fragment, return the length of the fragment. We take all clipping,
* both hard and soft, into account here. Any clipping that occurred
* earlier and isn't accounted for within Bowtie2 should be accounted for
* by the user in how they set the maximum and minimum fragment length
* settings.
*/
int64_t setFragmentLength(const AlnRes& omate, const AlnFlags& flags) {
Coord st, en;
Coord ost, oen;
assert_eq(refid(), omate.refid());
getExtendedCoords(st, en, flags);
omate.getExtendedCoords(ost, oen, flags);
bool imUpstream;
if (st.off() == ost.off()) {
// --ff case
if (st.fw() && ost.fw() && readMate1()) {
imUpstream = true;
} else if (st.fw() && !ost.fw()) {
imUpstream = true;
} else {
imUpstream = false;
}
} else if (st.off() < ost.off()) {
imUpstream = true;
} else {
imUpstream = false;
}
TRefOff up = std::min(st.off(), ost.off());
TRefOff dn = std::max(en.off(), oen.off());
assert_geq(dn, up);
fraglen_ = 1 + dn - up;
if(!imUpstream) {
fraglen_ = -fraglen_;
}
fraglenSet_ = true;
return fraglen_;
}
/**
* Return fragment length inferred by a paired-end alignment, or -1 if the
* alignment is not part of a pair.
*/
int64_t fragmentLength() const {
assert_gt(type_, 0);
assert(fraglenSet_);
return fraglen_;
}
/**
* Initialize new AlnRes.
*/
void init(
size_t rdlen, // # chars after hard trimming
AlnScore score, // alignment score
const EList<Edit>* ned, // nucleotide edits
size_t ned_i, // first position to copy
size_t ned_n, // # positions to copy
const EList<Edit>* aed, // ambiguous base resolutions
size_t aed_i, // first position to copy
size_t aed_n, // # positions to copy
Coord refcoord, // leftmost ref pos of 1st al char
TRefOff reflen, // length of the reference
int seedmms = -1,// # seed mms allowed
int seedlen = -1,// seed length
int seedival = -1,// space between seeds
int64_t minsc = -1,// minimum score for valid aln
int nuc5p = -1,//
int nuc3p = -1,
bool pretrimSoft = false,
size_t pretrim5p = 0, // trimming prior to alignment
size_t pretrim3p = 0, // trimming prior to alignment
bool trimSoft = true,
size_t trim5p = 0, // trimming from alignment
size_t trim3p = 0);// trimming from alignment
/**
* Return number of bases trimmed from the 5' end. Argument determines
* whether we're counting hard- or soft-trimmed bases.
*/
size_t trimmed5p(bool soft) const {
size_t trim = 0;
if(pretrimSoft_ == soft) trim += pretrim5p_;
if(trimSoft_ == soft) trim += trim5p_;
return trim;
}
/**
* Return number of bases trimmed from the 3' end. Argument determines
* whether we're counting hard- or soft-trimmed bases.
*/
size_t trimmed3p(bool soft) const {
size_t trim = 0;
if(pretrimSoft_ == soft) trim += pretrim3p_;
if(trimSoft_ == soft) trim += trim3p_;
return trim;
}
/**
* Return number of bases trimmed from the left end. Argument determines
* whether we're counting hard- or soft-trimmed bases.
*/
size_t trimmedLeft(bool soft) const {
return fw() ? trimmed5p(soft) : trimmed3p(soft);
}
/**
* Return number of bases trimmed from the right end. Argument determines
* whether we're counting hard- or soft-trimmed bases.
*/
size_t trimmedRight(bool soft) const {
return fw() ? trimmed3p(soft) : trimmed5p(soft);
}
/**
* Set the number of reference Ns covered by the alignment.
*/
void setRefNs(size_t refns) {
refns_ = refns;
}
/**
* Return the number of reference Ns covered by the alignment.
*/
size_t refNs() const { return refns_; }
/**
* Clip away portions of the alignment that are outside the given bounds.
* Clipping is soft if soft == true, hard otherwise.
*/
void clipOutside(bool soft, TRefOff refi, TRefOff reff);
/**
* Soft trim bases from the LHS of the alignment.
*/
void clipLeft(size_t rd_amt, size_t rf_amt);
/**
* Soft trim bases from the RHS of the alignment.
*/
void clipRight(size_t rd_amt, size_t rf_amt);
/**
* In debug mode, we put a copy of the decoded nucleotide sequence here.
*/
ASSERT_ONLY(BTDnaString drd);
/**
* Return true iff this AlnRes should come before the given AlnRes in a
* prioritized list of results.
*/
bool operator<(const AlnRes& o) const {
return score_ > o.score_;
}
bool operator==(const AlnRes& o) const {
return
shapeSet_ == o.shapeSet_ &&
rdlen_ == o.rdlen_ &&
rdrows_ == o.rdrows_ &&
score_ == o.score_ &&
//oscore_ == o.oscore_ &&
ned_ == o.ned_ &&
aed_ == o.aed_ &&
refcoord_ == o.refcoord_ &&
reflen_ == o.reflen_ &&
refival_ == o.refival_ &&
rdextent_ == o.rdextent_ &&
rdexrows_ == o.rdexrows_ &&
rfextent_ == o.rfextent_ &&
seedmms_ == o.seedmms_ &&
seedlen_ == o.seedlen_ &&
seedival_ == o.seedival_ &&
minsc_ == o.minsc_ &&
nuc5p_ == o.nuc5p_ &&
nuc3p_ == o.nuc3p_ &&
refns_ == o.refns_ &&
type_ == o.type_ &&
fraglen_ == o.fraglen_ &&
pretrimSoft_ == o.pretrimSoft_ &&
pretrim5p_ == o.pretrim5p_ &&
pretrim3p_ == o.pretrim3p_ &&
trimSoft_ == o.trimSoft_ &&
trim5p_ == o.trim5p_ &&
trim3p_ == o.trim3p_;
}
/**
* Initialize a StackedAln (stacked alignment) object w/r/t this alignment.
*/
void initStacked(const Read& rd, StackedAln& st) const {
size_t trimLS = trimmed5p(true);
size_t trimLH = trimmed5p(false);
size_t trimRS = trimmed3p(true);
size_t trimRH = trimmed3p(false);
size_t len_trimmed = rd.length() - trimLS - trimRS;
if(!fw()) {
Edit::invertPoss(const_cast<EList<Edit>&>(ned_), len_trimmed, false);
swap(trimLS, trimRS);
swap(trimLH, trimRH);
}
st.init(
fw() ? rd.patFw : rd.patRc,
ned_, trimLS, trimLH, trimRS, trimRH);
if(!fw()) {
Edit::invertPoss(const_cast<EList<Edit>&>(ned_), len_trimmed, false);
}
}
protected:
/**
* Given that rdextent_ and ned_ are already set, calculate rfextent_.
*/
void calcRefExtent() {
assert_gt(rdextent_, 0);
rfextent_ = rdextent_;
for(size_t i = 0; i < ned_.size(); i++) {
if(ned_[i].isRefGap()) rfextent_--;
if(ned_[i].isReadGap()) rfextent_++;
}
}
bool shapeSet_; // true iff setShape() has been called
size_t rdlen_; // length of the original read
size_t rdrows_; // # rows in alignment problem
AlnScore score_; // best SW score found
AlnScore oscore_; // score of opposite mate
EList<Edit> ned_; // base edits
EList<Edit> aed_; // ambiguous base resolutions
Coord refcoord_; // ref coordinates (seq idx, offset, orient)
TRefOff reflen_; // reference length
Interval refival_; // ref interval (coord + length)
size_t rdextent_; // number of read chars involved in alignment
size_t rdexrows_; // number of read rows involved in alignment
size_t rfextent_; // number of ref chars involved in alignment
int seedmms_; // number of mismatches allowed in seed
int seedlen_; // length of seed
int seedival_; // interval between seeds
int64_t minsc_; // minimum score
int nuc5p_; // 5'-most decoded base; clipped if excluding end
int nuc3p_; // 3'-most decoded base; clipped if excluding end
size_t refns_; // # of reference Ns overlapped
int type_; // unpaired or mate #1 or mate #2?
bool fraglenSet_; // true iff a fragment length has been inferred
int64_t fraglen_; // inferred fragment length
// A tricky aspect of trimming is that we have to decide what the units are:
// read positions, reference positions??? We choose read positions here.
// In other words, if an alignment overhangs the end of the reference and
// part of the overhanging portion is a reference gap, we have to make sure
// the trim amount reflects the number of *read characters* to trim
// including the character opposite the reference gap.
// Nucleotide-sequence trimming
bool pretrimSoft_; // trimming prior to alignment is soft?
size_t pretrim5p_; // # bases trimmed from 5p end prior to alignment
size_t pretrim3p_; // # bases trimmed from 3p end prior to alignment
bool trimSoft_; // trimming by local alignment is soft?
size_t trim5p_; // # bases trimmed from 5p end by local alignment
size_t trim3p_; // # bases trimmed from 3p end by local alignment
};
/**
* Unique ID for a cell in the overall DP table. This is a helpful concept
* because of our definition of "redundnant". Two alignments are redundant iff
* they have at least one cell in common in the overall DP table.
*/
struct RedundantCell {
RedundantCell() {
rfid = 0;
fw = true;
rfoff = 0;
rdoff = 0;
}
RedundantCell(
TRefId rfid_,
bool fw_,
TRefOff rfoff_,
size_t rdoff_)
{
init(rfid_, fw_, rfoff_, rdoff_);
}
void init(
TRefId rfid_,
bool fw_,
TRefOff rfoff_,
size_t rdoff_)
{
rfid = rfid_;
fw = fw_;
rfoff = rfoff_;
rdoff = rdoff_;
}
/**
* Return true iff this RedundantCell is less than the given RedundantCell.
*/
inline bool operator<(const RedundantCell& c) const {
if(rfid < c.rfid) return true;
if(rfid > c.rfid) return false;
if(!fw && c.fw) return true;
if( fw && !c.fw) return false;
if(rfoff < c.rfoff) return true;
if(rfoff > c.rfoff) return false;
return rdoff < c.rdoff;
}
/**
* Return true iff this RedundantCell is greater than the given
* RedundantCell.
*/
inline bool operator>(const RedundantCell& c) const {
if(rfid > c.rfid) return true;
if(rfid < c.rfid) return false;
if( fw && !c.fw) return true;
if(!fw && c.fw) return false;
if(rfoff > c.rfoff) return true;
if(rfoff < c.rfoff) return false;
return rdoff > c.rdoff;
}
/**
* Return true iff this RedundantCell is equal to the given RedundantCell.
*/
inline bool operator==(const RedundantCell& c) const {
return
rfid == c.rfid &&
fw == c.fw &&
rfoff == c.rfoff &&
rdoff == c.rdoff;
}
TRefId rfid; // reference id
bool fw; // orientation
TRefOff rfoff; // column
size_t rdoff; // row
};
/**
* Encapsulates data structures and routines allowing client to determine
* whether one alignment is redundant (has a DP cell in common with) with a set
* of others.
*
* Adding cells to and checking cell against this data structure can get rather
* slow when there are many alignments in play. Dividing the burden over
* read-position bins helps some.
*/
class RedundantAlns {
public:
RedundantAlns(int cat = DP_CAT) : cells_(cat) { }
/**
* Empty the cell database.
*/
void reset() { cells_.clear(); }
/**
* Initialize and set the list of sets to equal the read length.
*/
void init(size_t npos) {
cells_.resize(npos);
for(size_t i = 0; i < npos; i++) {
cells_[i].clear();
}
}
/**
* Add all of the cells involved in the given alignment to the database.
*/
void add(const AlnRes& res);
/**
* Return true iff the given alignment has at least one cell that overlaps
* one of the cells in the database.
*/
bool overlap(const AlnRes& res);
protected:
EList<ESet<RedundantCell> > cells_;
};
typedef uint64_t TNumAlns;
/**
* Encapsulates a concise summary of a set of alignment results for a
* given pair or mate. Referring to the fields of this object should
* provide enough information to print output records for the read.
*/
class AlnSetSumm {
public:
AlnSetSumm() { reset(); }
/**
* Given an unpaired read (in either rd1 or rd2) or a read pair
* (mate 1 in rd1, mate 2 in rd2).
*/
explicit AlnSetSumm(
const Read* rd1,
const Read* rd2,
const EList<AlnRes>* rs1,
const EList<AlnRes>* rs2,
const EList<AlnRes>* rs1u,
const EList<AlnRes>* rs2u,
bool exhausted1,
bool exhausted2,
TRefId orefid,
TRefOff orefoff)
{
init(rd1, rd2, rs1, rs2, rs1u, rs2u, exhausted1, exhausted2,
orefid, orefoff);
}
explicit AlnSetSumm(
TNumAlns other1,
TNumAlns other2,
bool paired,
bool exhausted1,
bool exhausted2,
TRefId orefid,
TRefOff orefoff)
{
init(
other1,
other2,
paired,
exhausted1,
exhausted2,
orefid,
orefoff);
}
/**
* Set to uninitialized state.
*/
void reset() {
bestUScore_.invalidate();
bestP1Score_.invalidate();
bestP2Score_.invalidate();
bestCScore_.invalidate();
bestUDist_.invalidate();
bestP1Dist_.invalidate();
bestP2Dist_.invalidate();
bestCDist_.invalidate();
bestUnchosenUScore_.invalidate();
bestUnchosenP1Score_.invalidate();
bestUnchosenP2Score_.invalidate();
bestUnchosenCScore_.invalidate();
bestUnchosenUDist_.invalidate();
bestUnchosenP1Dist_.invalidate();
bestUnchosenP2Dist_.invalidate();
bestUnchosenCDist_.invalidate();
other1_ = other2_ = 0;
paired_ = false;
exhausted1_ = exhausted2_ = false;
orefid_ = -1;
orefoff_ = -1;
}
void init(
const Read* rd1,
const Read* rd2,
const EList<AlnRes>* rs1,
const EList<AlnRes>* rs2,
const EList<AlnRes>* rs1u,
const EList<AlnRes>* rs2u,
bool exhausted1,
bool exhausted2,
TRefId orefid,
TRefOff orefoff);
/**
* Initialize given fields. See constructor for how fields are set.
*/
void init(
TNumAlns other1,
TNumAlns other2,
bool paired,
bool exhausted1,
bool exhausted2,
TRefId orefid,
TRefOff orefoff)
{
other1_ = other1;
other2_ = other2;
paired_ = paired;
exhausted1_ = exhausted1;
exhausted2_ = exhausted2;
orefid_ = orefid;
orefoff_ = orefoff;
assert(repOk());
}
/**
* Return true iff there is at least a best alignment
*/
bool empty() const {
assert(repOk());
return !VALID_AL_SCORE(bestScore(true));
}
#ifndef NDEBUG
/**
* Check that the summary is internally consistent.
*/
bool repOk() const {
return true;
}
#endif
TNumAlns other1() const { return other1_; }
TNumAlns other2() const { return other2_; }
bool paired() const { return paired_; }
bool exhausted1() const { return exhausted1_; }
bool exhausted2() const { return exhausted2_; }
TRefId orefid() const { return orefid_; }
TRefOff orefoff() const { return orefoff_; }
AlnScore bestUScore() const { return bestUScore_; }
AlnScore bestP1Score() const { return bestP1Score_; }
AlnScore bestP2Score() const { return bestP2Score_; }
AlnScore bestCScore() const { return bestCScore_; }
AlnScore bestUDist() const { return bestUDist_; }
AlnScore bestP1Dist() const { return bestP1Dist_; }
AlnScore bestP2Dist() const { return bestP2Dist_; }
AlnScore bestCDist() const { return bestCDist_; }
AlnScore bestUnchosenUScore() const { return bestUnchosenUScore_; }
AlnScore bestUnchosenP1Score() const { return bestUnchosenP1Score_; }
AlnScore bestUnchosenP2Score() const { return bestUnchosenP2Score_; }
AlnScore bestUnchosenCScore() const { return bestUnchosenCScore_; }
AlnScore bestUnchosenUDist() const { return bestUnchosenUDist_; }
AlnScore bestUnchosenP1Dist() const { return bestUnchosenP1Dist_; }
AlnScore bestUnchosenP2Dist() const { return bestUnchosenP2Dist_; }
AlnScore bestUnchosenCDist() const { return bestUnchosenCDist_; }
/**
* Return best unchosen alignment score for end 1 or 2 of a pair.
*/
AlnScore bestUnchosenPScore(bool mate1) const {
return mate1 ? bestUnchosenP1Score_ : bestUnchosenP2Score_;
}
/**
* Return best unchosen edit distance for end 1 or 2 of a pair.
*/
AlnScore bestUnchosenPDist(bool mate1) const {
return mate1 ? bestUnchosenP1Dist_ : bestUnchosenP2Dist_;
}
/**
* Return best unchosen alignment score for end 1 or 2 whether
* the read is a pair or not.
*/
AlnScore bestUnchosenScore(bool mate1) const {
return paired_ ? (mate1 ? bestUnchosenP1Score_ : bestUnchosenP2Score_) : bestUnchosenUScore();
}
/**
* Return best unchosen edit distance for end 1 or 2 whether
* the read is a pair or not.
*/
AlnScore bestUnchosenDist(bool mate1) const {
return paired_ ? (mate1 ? bestUnchosenP1Dist_ : bestUnchosenP2Dist_) : bestUnchosenUDist();
}
bool exhausted(bool mate1) const {
return mate1 ? exhausted1_ : exhausted2_;
}
/**
* Return best alignment score for end 1 or 2 whether the read is
* a pair or not.
*/
AlnScore bestScore(bool mate1) const {
return paired_ ? (mate1 ? bestP1Score_ : bestP2Score_) : bestUScore_;
}
/**
* Return best edit distance for end 1 or 2 whether the read is
* a pair or not.
*/
AlnScore bestDist(bool mate1) const {
return paired_ ? (mate1 ? bestP1Dist_ : bestP2Dist_) : bestUDist_;
}
/**
* Add information about unchosen alignments to the summary. This is
* in its own "setter" function because it's not known until we've
* picked which alignment to report, which is after we've initially
* constructed the summary.
*
* Info about unchosen alignments is used for predicting mapping
* quality.
*/
void setBest(
AlnScore bestUScore,
AlnScore bestUDist,
AlnScore bestP1Score,
AlnScore bestP1Dist,
AlnScore bestP2Score,
AlnScore bestP2Dist,
AlnScore bestCScore,
AlnScore bestCDist,
AlnScore bestUnchosenUScore,
AlnScore bestUnchosenUDist,
AlnScore bestUnchosenP1Score,
AlnScore bestUnchosenP1Dist,
AlnScore bestUnchosenP2Score,
AlnScore bestUnchosenP2Dist,
AlnScore bestUnchosenCScore,
AlnScore bestUnchosenCDist)
{
assert(bestUScore.valid() == bestUDist.valid());
assert(bestP1Score.valid() == bestP1Dist.valid());
assert(bestP2Score.valid() == bestP2Dist.valid());
assert(bestCScore.valid() == bestCDist.valid());
assert(bestUnchosenUScore.valid() == bestUnchosenUDist.valid());
assert(bestUnchosenP1Score.valid() == bestUnchosenP1Dist.valid());
assert(bestUnchosenP2Score.valid() == bestUnchosenP2Dist.valid());
assert(bestUnchosenCScore.valid() == bestUnchosenCDist.valid());
bestUScore_ = bestUScore;
bestUDist_ = bestUDist;
bestP1Score_ = bestP1Score;
bestP1Dist_ = bestP1Dist;
bestP2Score_ = bestP2Score;
bestP2Dist_ = bestP2Dist;
bestCScore_ = bestCScore;
bestCDist_ = bestCDist;
bestUnchosenUScore_ = bestUnchosenUScore;
bestUnchosenUDist_ = bestUnchosenUDist;
bestUnchosenP1Score_ = bestUnchosenP1Score;
bestUnchosenP1Dist_ = bestUnchosenP1Dist;
bestUnchosenP2Score_ = bestUnchosenP2Score;
bestUnchosenP2Dist_ = bestUnchosenP2Dist;
bestUnchosenCScore_ = bestUnchosenCScore;
bestUnchosenCDist_ = bestUnchosenCDist;
}
protected:
TNumAlns other1_; // # more alignments within N points of second-best
TNumAlns other2_; // # more alignments within N points of second-best
bool paired_; // results are paired
bool exhausted1_; // searched exhaustively for mate 1 alignments?
bool exhausted2_; // searched exhaustively for mate 2 alignments?
TRefId orefid_;
TRefOff orefoff_;
AlnScore bestUScore_;
AlnScore bestUDist_;
AlnScore bestP1Score_;
AlnScore bestP1Dist_;
AlnScore bestP2Score_;
AlnScore bestP2Dist_;
AlnScore bestCScore_;
AlnScore bestCDist_;
AlnScore bestUnchosenUScore_;
AlnScore bestUnchosenUDist_;
AlnScore bestUnchosenP1Score_;
AlnScore bestUnchosenP1Dist_;
AlnScore bestUnchosenP2Score_;
AlnScore bestUnchosenP2Dist_;
AlnScore bestUnchosenCScore_;
AlnScore bestUnchosenCDist_;
};
#endif
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。