15 Star 87 Fork 43

编程语言算法集/d2l-zh

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
config.ini 8.34 KB
一键复制 编辑 原始数据 按行查看 历史
xiaotinghe 提交于 2022-12-07 07:35 . d2l-zh graffle (#1230)
[project]
name = d2l-zh
title = 动手学深度学习
author = Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola
copyright = 2022, All authors. Licensed under CC-BY-SA-4.0 and MIT-0.
release = 2.0.0
lang = zh
[translation]
origin_repo = d2l-ai/d2l-en
origin_lang = en
translator = aws
[build]
# A list of wildcards to indicate the markdown files that need to be evaluated as
# Jupyter notebooks.
notebooks = *.md */*.md
# A list of files that will be copied to the build folder.
resources = img/ d2lzh/ d2l.bib setup.py
# Files that will be skipped.
exclusions = */*_origin.md README.md STYLE_GUIDE.md INFO.md CODE_OF_CONDUCT.md CONTRIBUTING.md contrib/*md
# If True (default), then will evaluate the notebook to obtain outputs.
eval_notebook = True
tabs = mxnet, pytorch, tensorflow, paddle
sphinx_configs = numfig_format = {'figure': '图%%s', 'table': '表%%s', 'code-block': '列表%%s', 'section': '%%s节'}
latex_elements = {
'utf8extra' : '',
'inputenc' : '',
'babel' : r'''\usepackage[english]{babel}''',
'preamble' : r'''
\usepackage{ctex}
\setmainfont{Source Serif Pro}
\setsansfont{Source Sans Pro}
\setmonofont{Inconsolata}
\setCJKmainfont[BoldFont=Source Han Serif SC SemiBold]{Source Han Serif SC}
\setCJKsansfont[BoldFont=Source Han Sans SC Medium]{Source Han Sans SC Normal}
\setCJKmonofont{Source Han Sans SC Normal}
\addto\captionsenglish{\renewcommand{\chaptername}{}}
\addto\captionsenglish{\renewcommand{\contentsname}{目录}}
\setlength{\headheight}{13.6pt}
\makeatletter
\fancypagestyle{normal}{
\fancyhf{}
\fancyfoot[LE,RO]{{\py@HeaderFamily\thepage}}
\fancyfoot[LO]{{\py@HeaderFamily\nouppercase{\rightmark}}}
\fancyfoot[RE]{{\py@HeaderFamily\nouppercase{\leftmark}}}
\fancyhead[LE,RO]{{\py@HeaderFamily }}
}
\makeatother
\CJKsetecglue{}
\usepackage{zhnumber}
\definecolor{d2lbookOutputCellBackgroundColor}{RGB}{255,255,255}
\definecolor{d2lbookOutputCellBorderColor}{rgb}{.85,.85,.85}
\def\diilbookstyleoutputcell
{\sphinxcolorlet{VerbatimColor}{d2lbookOutputCellBackgroundColor}
\sphinxcolorlet{VerbatimBorderColor}{d2lbookOutputCellBorderColor}
\sphinxsetup{verbatimwithframe,verbatimborder=0.5pt}
}
\definecolor{d2lbookInputCellBackgroundColor}{rgb}{.95,.95,.95}
\def\diilbookstyleinputcell
{\sphinxcolorlet{VerbatimColor}{d2lbookInputCellBackgroundColor}
\sphinxsetup{verbatimwithframe=false,verbatimborder=0pt}
}
''',
'sphinxsetup': '''verbatimsep=2mm,
VerbatimColor={rgb}{.95,.95,.95},
VerbatimBorderColor={rgb}{.95,.95,.95},
pre_border-radius=3pt,
''',
# The font size ('10pt', '11pt' or '12pt').
'pointsize': '10pt',
# Latex figure (float) alignment
'figure_align': 'H',
'fncychap': '\\usepackage[Sonny]{fncychap}',
}
[html]
# A list of links that is displayed on the navbar. A link consists of three
# items: name, URL, and a fontawesome icon
# (https://fontawesome.com/icons?d=gallery). Items are separated by commas.
# PDF, http://numpy.d2l.ai/d2l-en.pdf, fas fa-file-pdf,
header_links = MXNet, https://zh-v2.d2l.ai/d2l-zh.pdf, fas fa-file-pdf,
PyTorch, https://zh-v2.d2l.ai/d2l-zh-pytorch.pdf, fas fa-file-pdf,
Jupyter 记事本, https://zh-v2.d2l.ai/d2l-zh.zip, fas fa-download,
课程, https://courses.d2l.ai/zh-v2/, fas fa-user-graduate,
GitHub, https://github.com/d2l-ai/d2l-zh, fab fa-github,
English, https://d2l.ai, fas fa-external-link-alt
favicon = static/favicon.png
html_logo = static/logo-with-text.png
[pdf]
# The file used to post-process the generated tex file.
post_latex = ./static/post_latex/main.py
latex_logo = static/logo.png
bibfile = d2l.bib
[library]
version_file = d2l/__init__.py
[library-mxnet]
lib_file = d2l/mxnet.py
lib_name = np
# Map from d2l.xx to np.xx
simple_alias = ones, zeros, arange, meshgrid, sin, sinh, cos, cosh, tanh,
linspace, exp, log, tensor -> array, normal -> random.normal,
randn -> random.randn,
rand -> random.rand, matmul -> dot, int32, float32,
concat -> concatenate, stack, abs, eye
# Map from d2l.xx(a, *args, **kwargs) to a.xx(*args, **kwargs)
fluent_alias = numpy -> asnumpy, reshape, to -> as_in_context, reduce_sum -> sum,
argmax, astype, reduce_mean -> mean,
alias =
size = lambda a: a.size
transpose = lambda a: a.T
nn_Module = nn.Block
reverse_alias =
d2l.size\(([\w\_\d]+)\) -> \1.size
d2l.transpose\(([\w\_\d]+)\) -> \1.T
d2l.nn_Module -> nn.Block
[library-pytorch]
lib_file = d2l/torch.py
lib_name = torch
simple_alias = ones, zeros, tensor, arange, meshgrid, sin, sinh, cos, cosh,
tanh, linspace, exp, log, normal, rand, randn, matmul, int32, float32,
concat -> cat, stack, abs, eye
fluent_alias = numpy -> detach().numpy, size -> numel, reshape, to,
reduce_sum -> sum, argmax, astype -> type, transpose -> t,
reduce_mean -> mean
alias =
nn_Module = nn.Module
reverse_alias =
d2l.nn_Module -> nn.Module
[library-tensorflow]
lib_file = d2l/tensorflow.py
lib_name = tf
simple_alias = reshape, ones, zeros, meshgrid, sin, sinh, cos, cosh, tanh,
linspace, exp, normal -> random.normal, rand -> random.uniform,
matmul, reduce_sum, reduce_mean, argmax, tensor -> constant,
arange -> range, astype -> cast, int32, float32, transpose,
concat, stack, abs, eye, log -> math.log
fluent_alias = numpy,
alias =
size = lambda a: tf.size(a).numpy()
reverse_alias =
d2l.size\(([\w\_\d]+)\) -> tf.size(\1).numpy()
d2l.nn_Module -> tf.keras.Model
[library-paddle]
lib_file = d2l/paddle.py
lib_name = paddle
simple_alias = ones, zeros, tensor -> to_tensor, arange, meshgrid, sin, sinh, cos, cosh,
tanh, linspace, exp, log, normal, rand, randn, matmul, int32, float32,
concat, stack, abs, eye
fluent_alias = numpy -> detach().numpy, size -> numel, reshape, to,
reduce_sum -> sum, argmax, astype, transpose -> t,
reduce_mean -> mean
alias =
nn_Module = nn.Layer
reverse_alias =
d2l.nn_Module -> nn.Layer
[deploy]
other_file_s3urls = s3://d2l-webdata/releases/d2l-zh/d2l-zh-1.0.zip
s3://d2l-webdata/releases/d2l-zh/d2l-zh-1.1.zip
s3://d2l-webdata/releases/d2l-zh/d2l-zh-2.0.0.zip
google_analytics_tracking_id = UA-96378503-2
[colab]
github_repo = mxnet, d2l-ai/d2l-zh-colab
pytorch, d2l-ai/d2l-zh-pytorch-colab
tensorflow, d2l-ai/d2l-zh-tensorflow-colab
paddle, d2l-ai/d2l-zh-paddle-colab
replace_svg_url = img, http://d2l.ai/_images
libs = mxnet, mxnet, -U mxnet-cu101==1.7.0
mxnet, d2l, git+https://github.com/d2l-ai/d2l-zh@release # installing d2l
pytorch, d2l, git+https://github.com/d2l-ai/d2l-zh@release # installing d2l
tensorflow, d2l, git+https://github.com/d2l-ai/d2l-zh@release # installing d2l
paddle, d2l, git+https://github.com/d2l-ai/d2l-zh@release # installing d2l
[sagemaker]
github_repo = mxnet, d2l-ai/d2l-zh-sagemaker
pytorch, d2l-ai/d2l-zh-pytorch-sagemaker
tensorflow, d2l-ai/d2l-zh-tensorflow-sagemaker
paddle, d2l-ai/d2l-zh-paddle-sagemaker
kernel = mxnet, conda_mxnet_p36
pytorch, conda_pytorch_p36
tensorflow, conda_tensorflow_p36
paddle, conda_paddle_p36
libs = mxnet, mxnet, -U mxnet-cu101==1.7.0
mxnet, d2l, .. # installing d2l
pytorch, d2l, .. # installing d2l
tensorflow, d2l, .. # installing d2l
paddle, d2l, .. # installing d2l
[slides]
top_right = <img height=80px src='http://d2l.ai/_static/logo-with-text.png'/>
github_repo = pytorch, d2l-ai/d2l-zh-pytorch-slides
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/TheAlgorithms/d2l-zh.git
git@gitee.com:TheAlgorithms/d2l-zh.git
TheAlgorithms
d2l-zh
d2l-zh
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385