1 Star 0 Fork 1

TF-boy/csl

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
run_text2text_csl.py 12.72 KB
一键复制 编辑 原始数据 按行查看 历史
P01son 提交于 2022-09-12 16:29 . update readme, evaluation data and code
"""
This script provides an example to wrap TencentPretrain for text-to-text fine-tuning.
"""
import sys
import os
import random
import argparse
import torch
from rouge import Rouge
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from uer.model_saver import save_model
from uer.decoders import *
from uer.targets import *
from finetune.run_classifier import *
rouge = Rouge()
class Text2text(torch.nn.Module):
def __init__(self, args):
super(Text2text, self).__init__()
self.embedding = str2embedding[args.embedding](args, len(args.tokenizer.vocab))
self.encoder = str2encoder[args.encoder](args)
self.tgt_embedding = str2embedding[args.tgt_embedding](args, len(args.tokenizer.vocab))
self.decoder = str2decoder[args.decoder](args)
self.target = LmTarget(args, len(args.tokenizer.vocab))
if args.tie_weights:
self.target.output_layer.weight = self.embedding.word_embedding.weight
if args.share_embedding:
self.tgt_embedding.word_embedding.weight = self.embedding.word_embedding.weight
def encode(self, src, seg):
emb = self.embedding(src, seg)
memory_bank = self.encoder(emb, seg)
return memory_bank
def decode(self, src, memory_bank, tgt):
tgt_in, tgt_out, _ = tgt
decoder_emb = self.tgt_embedding(tgt_in, None)
hidden = self.decoder(memory_bank, decoder_emb, (src,))
output = self.target.output_layer(hidden)
return output
def forward(self, src, tgt, seg, memory_bank=None, only_use_encoder=False):
if only_use_encoder:
return self.encode(src, seg)
if memory_bank is not None:
return self.decode(src, memory_bank, tgt)
tgt_in, tgt_out, _ = tgt
memory_bank = self.encode(src, seg)
output = self.decode(src, memory_bank, tgt)
if tgt_out is None:
return None, output
else:
decoder_emb = self.tgt_embedding(tgt_in, None)
hidden = self.decoder(memory_bank, decoder_emb, (seg,))
loss = self.target(hidden, tgt_out, seg)[0]
return loss, output
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
line = line[:-1].split('\t')
if len(line) == 3:
text = line[0] + SEP_TOKEN + line[1]
label = line[2]
else:
text, label = line[0], line[1]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text) + [SEP_TOKEN])
tgt_in = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(label) + [SEP_TOKEN])
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
if len(tgt_in) > args.tgt_seq_length:
tgt_in = tgt_in[: args.tgt_seq_length]
tgt_out = tgt_in[1:] + [PAD_ID]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
while len(tgt_in) < args.tgt_seq_length:
tgt_in.append(PAD_ID)
tgt_out.append(PAD_ID)
dataset.append((src, tgt_in, tgt_out, seg))
return dataset
def batch_loader(batch_size, src, tgt_in, tgt_out, seg):
instances_num = src.size()[0]
for i in range(instances_num // batch_size):
src_batch = src[i * batch_size : (i + 1) * batch_size, :]
tgt_in_batch = tgt_in[i * batch_size : (i + 1) * batch_size, :]
tgt_out_batch = tgt_out[i * batch_size : (i + 1) * batch_size, :]
seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, None
if instances_num > instances_num // batch_size * batch_size:
src_batch = src[instances_num // batch_size * batch_size :, :]
tgt_in_batch = tgt_in[instances_num // batch_size * batch_size :, :]
tgt_out_batch = tgt_out[instances_num // batch_size * batch_size :, :]
seg_batch = seg[instances_num // batch_size * batch_size :, :]
yield src_batch, tgt_in_batch, tgt_out_batch, seg_batch, None
def train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch):
model.zero_grad()
src_batch = src_batch.to(args.device)
tgt_in_batch = tgt_in_batch.to(args.device)
tgt_out_batch = tgt_out_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
loss, _ = model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), seg_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
if args.fp16:
with args.amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
scheduler.step()
return loss
def evaluate(args, dataset):
src = torch.LongTensor([example[0] for example in dataset])
tgt_in = torch.LongTensor([example[1] for example in dataset])
tgt_out = torch.LongTensor([example[2] for example in dataset])
seg = torch.LongTensor([example[3] for example in dataset])
generated_sentences = []
args.model.eval()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, _) in enumerate(batch_loader(args.batch_size, src, tgt_in, tgt_out, seg)):
src_batch = src_batch.to(args.device)
tgt_in_batch = torch.zeros(tgt_in_batch.size()[0],1, dtype = torch.long, device = args.device)
for j in range(tgt_in_batch.size()[0]):
tgt_in_batch[j][-1] = args.tokenizer.vocab.get(CLS_TOKEN)
seg_batch = seg_batch.to(args.device)
with torch.no_grad():
memory_bank = args.model(src_batch, None, seg_batch, only_use_encoder=True)
for _ in range(args.tgt_seq_length):
tgt_out_batch = tgt_in_batch
with torch.no_grad():
outputs = args.model(src_batch, (tgt_in_batch, tgt_out_batch, src_batch), None, memory_bank=memory_bank)
next_token_logits = outputs[:, -1]
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1)
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1)
for j in range(len(outputs)):
sentence = " ".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]])
generated_sentences.append(sentence)
if args.metrics == 0:
labels = {}
labels_num = 0
for example in dataset:
label = "".join([args.tokenizer.inv_vocab[token_id] for token_id in example[2][:-2]]).split(SEP_TOKEN)[0]
if not labels.get(label, None):
labels[label] = labels_num
labels_num += 1
confusion_matrix = torch.zeros(labels_num, labels_num, dtype=torch.long)
correct = 0
#print(labels)
for i, example in enumerate(dataset):
tgt = example[2]
tgt_token = " ".join([args.tokenizer.inv_vocab[token_id] for token_id in tgt[:-2]])
generated_sentences[i] = generated_sentences[i].split(SEP_TOKEN)[0]
pred = "".join(generated_sentences[i].split(' '))
gold = "".join(tgt_token.split(SEP_TOKEN)[0].split(' '))
pred = normlize_output(pred, list(labels.keys()))
#print(pred, gold)
if pred in labels.keys():
confusion_matrix[labels[pred], labels[gold]] += 1
if pred == gold:
correct += 1
args.logger.info("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct / len(dataset), correct, len(dataset)))
return correct / len(dataset)
elif args.metrics == 1:
r_l = 0
for i, example in enumerate(dataset):
label = " ".join([args.tokenizer.inv_vocab[token_id] for token_id in example[2][:-2]]).split(SEP_TOKEN)[0]
score = rouge.get_scores(hyps=generated_sentences[i], refs=label)
r_l += score[0]['rouge-l']['f']
args.logger.info("Rouge-L. {:.4f} ".format(r_l / len(dataset)))
return r_l / len(dataset)
elif args.metrics == 2:
bp = 0
for i, example in enumerate(dataset):
label = "".join([args.tokenizer.inv_vocab[token_id] for token_id in example[2][:-2]]).split(SEP_TOKEN)[0].split('_')
pred = "".join(generated_sentences[i].split(' ')).split('_')
#print(pred, label)
bp += bpref(pred, label)
args.logger.info("Bpref. {:.4f} ".format(bp / len(dataset)))
return bp / len(dataset)
def bpref(pred, gold):
score, n ,p = 0, 0, 0
for word in pred:
if word in gold:
score += (1 - n / len(pred))
p += 1
else:
n += 1
if p != 0:
return score / p
else:
return score
def normlize_output(pred, labels):
scores = torch.ones(len(labels))
try:
for i, label in enumerate(labels):
scores[i] = rouge.get_scores(hyps=pred, refs=label)[0]['rouge-l']['f']
return labels[torch.argmax(scores).item()]
except:
return random.choice(labels)
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
finetune_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--tgt_seq_length", type=int, default=32,
help="Output sequence length.")
parser.add_argument("--metrics", type=int, default=0,
help="0: Accuracy for classification. 1: Rouge-L for summarization, 2: Bpref. for keyword generation")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Text2text(args)
# Load or initialize parameters.
load_or_initialize_parameters(args, model)
# Get logger.
args.logger = init_logger(args)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
# Training phase.
trainset = read_dataset(args, args.train_path)
instances_num = len(trainset)
batch_size = args.batch_size
args.train_steps = int(instances_num * args.epochs_num / batch_size) + 1
args.logger.info("Batch size: {}".format(batch_size))
args.logger.info("The number of training instances: {}".format(instances_num))
optimizer, scheduler = build_optimizer(args, model)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
args.amp = amp
if torch.cuda.device_count() > 1:
args.logger.info("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
args.model = model
total_loss, result, best_result = 0.0, 0.0, 0.0
args.logger.info("Start training.")
for epoch in range(1, args.epochs_num + 1):
random.shuffle(trainset)
src = torch.LongTensor([example[0] for example in trainset])
tgt_in = torch.LongTensor([example[1] for example in trainset])
tgt_out = torch.LongTensor([example[2] for example in trainset])
seg = torch.LongTensor([example[3] for example in trainset])
model.train()
for i, (src_batch, tgt_in_batch, tgt_out_batch, seg_batch, _) in enumerate(batch_loader(batch_size, src, tgt_in, tgt_out, seg)):
loss = train_model(args, model, optimizer, scheduler, src_batch, tgt_in_batch, tgt_out_batch, seg_batch)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
args.logger.info("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i + 1, total_loss / args.report_steps))
total_loss = 0.0
result = evaluate(args, read_dataset(args, args.dev_path))
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
# Evaluation phase.
if args.test_path is not None:
args.logger.info("Test set evaluation.")
if torch.cuda.device_count() > 1:
args.model.module.load_state_dict(torch.load(args.output_model_path))
else:
args.model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, read_dataset(args, args.test_path))
if __name__ == "__main__":
main()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/TF-boy/csl.git
git@gitee.com:TF-boy/csl.git
TF-boy
csl
csl
master

搜索帮助