代码拉取完成,页面将自动刷新
同步操作将从 零壹博弈/ResnetGPT_DeepReinforcementLearning 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import torch
import torch.nn as nn
import torch.nn.functional as F
class myResnet(nn.Module):
def __init__(self, resnet):
super(myResnet, self).__init__()
self.resnet = resnet
def forward(self, img, att_size=6):
x = img
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
x = self.resnet.layer1(x)
x = self.resnet.layer2(x)
x = self.resnet.layer3(x)
x = self.resnet.layer4(x)
fc = x.mean(3).mean(2).squeeze()
att = F.adaptive_avg_pool2d(x,[att_size,att_size]).squeeze().permute(1, 2, 0)
return fc, att
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。