0 Star 9 Fork 2

Hypo/candock

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
core.py 14.03 KB
一键复制 编辑 原始数据 按行查看 历史
Hypo 提交于 2021-01-19 19:19 . Fix some bugs
import os
import time
import numpy as np
import torch
from torch import nn, optim
from tensorboardX import SummaryWriter
from multiprocessing import Process, Queue
# import torch.multiprocessing as mp
import warnings
warnings.filterwarnings("ignore")
import sys
from util import util,plot,options
from data import augmenter,transforms,dataloader,statistics
from models import creatnet
def show_paramsnumber(net,opt):
parameters = sum(param.numel() for param in net.parameters())
parameters = round(parameters/1e6,2)
util.writelog('net parameters: '+str(parameters)+'M',opt,True,True)
class Core(object):
def __init__(self, opt):
super(Core, self).__init__()
self.opt = opt
self.fold = 0
if self.opt.gpu_id != '-1':
os.environ["CUDA_VISIBLE_DEVICES"] = self.opt.gpu_id
if not self.opt.no_cudnn:
torch.backends.cudnn.benchmark = True
def network_init(self,printflag=False):
# Network & Optimizer & loss
self.net,self.exp = creatnet.creatnet(self.opt)
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=self.opt.lr)
self.loss_classifier = nn.CrossEntropyLoss(self.opt.weight)
if self.opt.mode == 'autoencoder':
self.loss_autoencoder = nn.MSELoss()
elif self.opt.mode == 'domain':
self.loss_dann_c = torch.nn.NLLLoss(self.opt.weight)
self.loss_dann_d = torch.nn.NLLLoss()
# save stack init
self.step = 0
self.epoch = 0
self.procs = []
self.features = []
self.results = {'F1':[],'err':[],'loss':[],'confusion_mat':[],'eval_detail':[],'best_epoch':0}
if printflag:
#util.writelog('network:\n'+str(self.net),self.opt,True)
show_paramsnumber(self.net,self.opt)
if self.opt.pretrained != '':
self.net.load_state_dict(torch.load(self.opt.pretrained))
if self.opt.continue_train:
self.net.load_state_dict(torch.load(os.path.join(self.opt.save_dir,'last.pth')))
if self.opt.gpu_id != '-1' and len(self.opt.gpu_id) == 1:
self.net.cuda()
elif self.opt.gpu_id != '-1' and len(self.opt.gpu_id) > 1:
self.net = nn.DataParallel(self.net)
self.net.cuda()
def save(self,net,path):
if isinstance(net, nn.DataParallel):
torch.save(net.module.cpu().state_dict(),path)
else:
torch.save(net.cpu().state_dict(),path)
if self.opt.gpu_id != '-1':
net.cuda()
def epoch_save(self):
self.save(self.net, os.path.join(self.opt.save_dir,'last.pth'))
if (self.epoch)%self.opt.network_save_freq == 0:
os.rename(os.path.join(self.opt.save_dir,'last.pth'), os.path.join(self.opt.save_dir,self.opt.model_name+'_epoch'+str(self.epoch)+'.pth'))
print('network saved.')
if self.opt.gpu_id != '-1':
self.net.cuda()
def save_traced_net(self):
self.net.cpu()
self.net.eval()
if self.opt.gpu_id == '-1' or len(self.opt.gpu_id) == 1:
traced_script_module = torch.jit.trace(self.net, self.exp)
else:
traced_script_module = torch.jit.trace(self.net.module, self.exp)
traced_script_module.save(os.path.join(self.opt.save_dir,'model.pt'))
print('Save traced network, example shape:',self.exp.size())
if self.opt.gpu_id != '-1':
self.net.cuda()
def check_remain_time(self):
if self.fold == 0 and self.epoch == 1:
self.start_time = time.time()
if self.fold == 0 and self.epoch == 2:
util.writelog('-> pre epoch cost time : '+str(round(time.time()-self.start_time,2))+'s',self.opt,True,True)
if (self.fold == 0 and self.epoch > 1) or self.fold != 0:
v = (self.fold*self.opt.epochs+self.epoch-1)/(time.time()-self.start_time)
remain = (self.opt.k_fold*self.opt.epochs-(self.fold*self.opt.epochs+self.epoch))/v
self.opt.TBGlobalWriter.add_scalar('RemainTime',remain/3600,self.fold*self.opt.epochs+self.epoch)
def preprocess(self,signals, labels, sequences, queue):
for i in range(np.ceil(len(sequences)/self.opt.batchsize).astype(np.int)):
signal,label = transforms.batch_generator(signals, labels, sequences[i*self.opt.batchsize:(i+1)*self.opt.batchsize])
signal = transforms.ToInputShape(self.opt,signal,test_flag =self.test_flag)
queue.put([signal,label,sequences[i*self.opt.batchsize:(i+1)*self.opt.batchsize]])
def start_process(self,signals,labels,sequences,queue):
p = Process(target=self.preprocess,args=(signals,labels,sequences,queue))
self.procs.append(p)
p.daemon = True
p.start()
def load_pool_init(self,signals,labels,sequences):
self.queue = Queue(self.opt.load_thread)
self.load_thread = self.opt.load_thread
process_batch_num = len(sequences)/self.opt.batchsize/self.load_thread
if process_batch_num < 1:
if self.epoch == 0:
self.load_thread = np.clip(len(sequences)//self.opt.batchsize,1,256)
process_batch_num = len(sequences)/self.opt.batchsize/self.load_thread
print('\033[1;33m'+'Warning: too much load thread, try : '+str(self.load_thread)+'\033[0m')
for i in range(self.load_thread):
if i != self.load_thread-1:
self.start_process(signals,labels,sequences[int(i*process_batch_num)*self.opt.batchsize:int((i+1)*process_batch_num)*self.opt.batchsize],self.queue)
else:
self.start_process(signals,labels,sequences[int(i*process_batch_num)*self.opt.batchsize:],self.queue)
def load_poll_terminate(self):
for p in self.procs:
if p.is_alive():
p.terminate()
p.join()
self.procs = []
def add_label_to_confusion_mat(self,true_labels, pre_labels, save_to_detail=False):
pre_labels = (torch.max(pre_labels, 1)[1]).data.cpu().numpy()
true_labels = true_labels.data.cpu().numpy()
for x in range(len(pre_labels)):
self.confusion_mat[true_labels[x]][pre_labels[x]] += 1
if save_to_detail and self.test_flag:
self.eval_detail['pre_labels'].append(pre_labels[x])
def add_class_acc_to_tensorboard(self,tag):
self.opt.TBGlobalWriter.add_scalars('fold'+str(self.fold+1)+'/F1', {tag:statistics.report(self.confusion_mat)[2]}, self.step)
self.opt.TBGlobalWriter.add_scalars('fold'+str(self.fold+1)+'/Top1.err', {tag:statistics.report(self.confusion_mat)[3]}, self.step)
def epoch_forward_init(self,signals,labels,sequences,istrain=True):
if istrain:
self.net.train()
self.test_flag = False
else:
# self.net.eval()
self.test_flag = True
self.eval_detail = {'sequences':[],'ture_labels':[],'pre_labels':[]} # sequences, ture_labels, pre_labels
self.features = []
self.epoch_loss = 0
self.confusion_mat = np.zeros((self.opt.label,self.opt.label), dtype=int)
np.random.shuffle(sequences)
if len(sequences)%self.opt.batchsize==1:# drop_last=True when last batchsize =1
sequences = sequences[:self.opt.batchsize*(len(sequences)//self.opt.batchsize)]
self.load_pool_init(signals, labels, sequences)
self.epoch_iter_length = np.ceil(len(sequences)/self.opt.batchsize).astype(np.int)
def forward(self,signal,label):
if self.opt.mode == 'autoencoder':
out,feature = self.net(signal)
loss = self.loss_autoencoder(out, signal)
label = label.data.cpu().numpy()
feature = (feature.data.cpu().numpy()).reshape(self.opt.batchsize,-1)
for i in range(self.opt.batchsize):
self.features.append(np.concatenate((feature[i], [label[i]])))
elif self.opt.mode in ['classify_1d','classify_2d','domain']:
if self.opt.model_name in ['dann','dann_base']:
out, _ = self.net(signal,0)
loss = self.loss_dann_c(out, label)
else:
out = self.net(signal)
loss = self.loss_classifier(out, label)
self.add_label_to_confusion_mat(label,out,True)
return out,loss
def eval(self,signals,labels,sequences):
self.epoch_forward_init(signals,labels,sequences,False)
for i in range(self.epoch_iter_length):
signal,label,sequence = self.queue.get()
self.eval_detail['sequences'].append(list(sequence))
self.eval_detail['ture_labels'].append(list(label))
signal,label = transforms.ToTensor(signal,label,gpu_id =self.opt.gpu_id)
with torch.no_grad():
output,loss = self.forward(signal, label)
self.epoch_loss += loss.item()
if self.opt.mode == 'autoencoder':
if (self.epoch+1)%10 == 0:
plot.draw_autoencoder_result(signal.data.cpu().numpy(), output.data.cpu().numpy(),self.opt)
plot.draw_scatter(self.features, self.opt)
else:
prec,reca,f1,err,kappa = statistics.report(self.confusion_mat)
print('epoch:'+str(self.epoch+1),' macro-prec,reca,F1,err,kappa: '+str(statistics.report(self.confusion_mat)))
self.add_class_acc_to_tensorboard('eval')
self.results['F1'].append(f1)
self.results['err'].append(err)
self.results['confusion_mat'].append(self.confusion_mat)
self.results['loss'].append(self.epoch_loss/(i+1))
self.results['eval_detail'].append(self.eval_detail)
if self.opt.best_index == 'f1':
if f1 >= max(self.results['F1']):self.results['best_epoch'] = self.epoch
elif self.opt.best_index == 'err':
if err <= min(self.results['err']):self.results['best_epoch'] = self.epoch
self.load_poll_terminate()
self.opt.TBGlobalWriter.add_scalars('fold'+str(self.fold+1)+'/loss', {'eval_loss':self.epoch_loss/(i+1)}, self.step)
self.epoch +=1
def train(self,signals,labels,sequences):
self.epoch_forward_init(signals,labels,sequences,True)
for i in range(self.epoch_iter_length):
signal,label,_ = self.queue.get()
self.step = float(i/self.epoch_iter_length + self.epoch)
self.optimizer.zero_grad()
signal,label = transforms.ToTensor(signal,label,gpu_id =self.opt.gpu_id)
output,loss = self.forward(signal, label)
self.opt.TBGlobalWriter.add_scalars('fold'+str(self.fold+1)+'/loss', {'train_loss':loss.item()}, self.step)
loss.backward()
self.optimizer.step()
self.load_poll_terminate()
self.add_class_acc_to_tensorboard('train')
def domain_random_loader_init(self,signals,labels,sequences,queue):
pre_thread_iter = self.epoch_iter_length//self.load_thread
last_thread_iter = self.epoch_iter_length - pre_thread_iter*(self.load_thread-1)
for i in range(self.load_thread):
if i != self.load_thread-1:
self.start_process(signals,labels,np.random.choice(sequences,pre_thread_iter*self.opt.batchsize,replace=True),queue)
else:
self.start_process(signals,labels,np.random.choice(sequences,last_thread_iter*self.opt.batchsize,replace=True),queue)
def dann_train(self,signals,labels,src_sequences,dst_sequences,beta=1.0,stable=False):
self.epoch_forward_init(signals,labels,src_sequences,True)
dst_signals_len = len(dst_sequences)
domain_queue = Queue(self.opt.load_thread)
self.domain_random_loader_init(signals,labels,dst_sequences,domain_queue)
domains = np.load(os.path.join(self.opt.dataset_dir,'domains.npy'))
domains = dataloader.rebuild_domain(domains)
for i in range(self.epoch_iter_length):
self.step = float(i/self.epoch_iter_length + self.epoch)
p = self.step / self.opt.epochs
if stable:alpha = beta
else:alpha = beta * (2. / (1. + np.exp(-10 * p)) - 1)
self.optimizer.zero_grad()
# src
s_signal,s_label,sequence = self.queue.get()
this_batch_len = s_signal.shape[0]
s_signal,s_label = transforms.ToTensor(s_signal,s_label,gpu_id =self.opt.gpu_id)
if self.opt.domain_num == 2:
s_domain = transforms.ToTensor(None,np.zeros(this_batch_len, dtype=np.int64),gpu_id =self.opt.gpu_id)
else:
s_domain = transforms.batch_generator(None, domains, sequence)
s_domain = transforms.ToTensor(None,s_domain,gpu_id =self.opt.gpu_id)
# dst
d_signal,_,sequence = domain_queue.get()
d_signal = transforms.ToTensor(d_signal[:this_batch_len],None,gpu_id =self.opt.gpu_id)
if self.opt.domain_num == 2:
d_domain = transforms.ToTensor(None,np.ones(this_batch_len, dtype=np.int64),gpu_id =self.opt.gpu_id)
else:
d_domain = transforms.batch_generator(None, domains, sequence[:this_batch_len])
d_domain = transforms.ToTensor(None,d_domain,gpu_id=self.opt.gpu_id)
class_output, domain_output = self.net(s_signal, alpha=alpha)
self.add_label_to_confusion_mat(s_label,class_output,False)
loss_s_label = self.loss_dann_c(class_output, s_label)
loss_s_domain = self.loss_dann_d(domain_output, s_domain)
_, domain_output = self.net(d_signal, alpha=alpha)
loss_d_domain = self.loss_dann_d(domain_output, d_domain)
loss = loss_s_label+loss_s_domain+loss_d_domain
self.opt.TBGlobalWriter.add_scalars('fold'+str(self.fold+1)+'/loss', {'src_label':loss_s_label.item(),
'src_domain':loss_s_domain.item(),
'dst_domain':loss_d_domain.item()}, self.step)
loss.backward()
self.optimizer.step()
self.add_class_acc_to_tensorboard('train')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/HypoX64/candock.git
git@gitee.com:HypoX64/candock.git
HypoX64
candock
candock
master

搜索帮助