代码拉取完成,页面将自动刷新
"""
Defines a simple autograd engine and uses it to classify points in the plane
to 3 classes (red, green, blue) using a simple multilayer perceptron (MLP).
"""
import math
# -----------------------------------------------------------------------------
# class that mimics the random interface in Python, fully deterministic,
# and in a way that we also control fully, and can also use in C, etc.
class RNG:
def __init__(self, seed):
self.state = seed
def random_u32(self):
# xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A
# doing & 0xFFFFFFFFFFFFFFFF is the same as cast to uint64 in C
# doing & 0xFFFFFFFF is the same as cast to uint32 in C
self.state ^= (self.state >> 12) & 0xFFFFFFFFFFFFFFFF
self.state ^= (self.state << 25) & 0xFFFFFFFFFFFFFFFF
self.state ^= (self.state >> 27) & 0xFFFFFFFFFFFFFFFF
return ((self.state * 0x2545F4914F6CDD1D) >> 32) & 0xFFFFFFFF
def random(self):
# random float32 in [0, 1)
return (self.random_u32() >> 8) / 16777216.0
def uniform(self, a=0.0, b=1.0):
# random float32 in [a, b)
return a + (b-a) * self.random()
random = RNG(42)
# -----------------------------------------------------------------------------
# Value
class Value:
""" stores a single scalar value and its gradient """
def __init__(self, data, _children=(), _op=''):
self.data = data
self.grad = 0
# internal variables used for autograd graph construction
self._backward = lambda: None
self._prev = set(_children)
self._op = _op # the op that produced this node, for graphviz / debugging / etc
def __add__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out
def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __pow__(self, other):
assert isinstance(other, (int, float)), "only supporting int/float powers for now"
out = Value(self.data**other, (self,), f'**{other}')
def _backward():
self.grad += (other * self.data**(other-1)) * out.grad
out._backward = _backward
return out
def relu(self):
out = Value(0 if self.data < 0 else self.data, (self,), 'ReLU')
def _backward():
self.grad += (out.data > 0) * out.grad
out._backward = _backward
return out
def tanh(self):
out = Value(math.tanh(self.data), (self,), 'tanh')
def _backward():
self.grad += (1 - out.data**2) * out.grad
out._backward = _backward
return out
def exp(self):
out = Value(math.exp(self.data), (self,), 'exp')
def _backward():
self.grad += math.exp(self.data) * out.grad
out._backward = _backward
return out
def log(self):
# (this is the natural log)
out = Value(math.log(self.data), (self,), 'log')
def _backward():
self.grad += (1/self.data) * out.grad
out._backward = _backward
return out
def backward(self):
# topological order all of the children in the graph
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(self)
# go one variable at a time and apply the chain rule to get its gradient
self.grad = 1
for v in reversed(topo):
v._backward()
def __neg__(self): # -self
return self * -1
def __radd__(self, other): # other + self
return self + other
def __sub__(self, other): # self - other
return self + (-other)
def __rsub__(self, other): # other - self
return other + (-self)
def __rmul__(self, other): # other * self
return self * other
def __truediv__(self, other): # self / other
return self * other**-1
def __rtruediv__(self, other): # other / self
return other * self**-1
def __repr__(self):
return f"Value(data={self.data}, grad={self.grad})"
# -----------------------------------------------------------------------------
# Multi-Layer Perceptron (MLP) network
class Module:
def zero_grad(self):
for p in self.parameters():
p.grad = 0
def parameters(self):
return []
class Neuron(Module):
def __init__(self, nin, nonlin=True):
r = random.uniform(-1, 1) * nin**-0.5
self.w = [Value(r) for _ in range(nin)]
self.b = Value(0)
self.nonlin = nonlin
def __call__(self, x):
act = sum((wi*xi for wi,xi in zip(self.w, x)), self.b)
return act.tanh() if self.nonlin else act
def parameters(self):
return self.w + [self.b]
def __repr__(self):
return f"{'TanH' if self.nonlin else 'Linear'}Neuron({len(self.w)})"
class Layer(Module):
def __init__(self, nin, nout, **kwargs):
self.neurons = [Neuron(nin, **kwargs) for _ in range(nout)]
def __call__(self, x):
out = [n(x) for n in self.neurons]
return out[0] if len(out) == 1 else out
def parameters(self):
return [p for n in self.neurons for p in n.parameters()]
def __repr__(self):
return f"Layer of [{', '.join(str(n) for n in self.neurons)}]"
class MLP(Module):
def __init__(self, nin, nouts):
sz = [nin] + nouts
self.layers = [Layer(sz[i], sz[i+1], nonlin=i!=len(nouts)-1) for i in range(len(nouts))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]
def __repr__(self):
return f"MLP of [{', '.join(str(layer) for layer in self.layers)}]"
# -----------------------------------------------------------------------------
# loss function: the negative log likelihood (NLL) loss
def nll_loss(logits, target):
# subtract the max for numerical stability (avoids overflow)
max_val = max(val.data for val in logits)
logits = [val - max_val for val in logits]
# 1) evaluate elementwise e^x
ex = [x.exp() for x in logits]
# 2) compute the sum of the above
denom = sum(ex)
# 3) normalize by the sum to get probabilities
probs = [x / denom for x in ex]
# 4) log the probabilities at target
logp = (probs[target]).log()
# 5) the negative log likelihood loss (invert so we get a loss - lower is better)
nll = -logp
return nll
# -----------------------------------------------------------------------------
# let's train!
# generate a random dataset with 100 2-dimensional datapoints in 3 classes
def gen_data(n=100):
pts = []
for _ in range(n):
x = random.uniform(-2.0, 2.0)
y = random.uniform(-2.0, 2.0)
# concentric circles
# label = 0 if x**2 + y**2 < 1 else 1 if x**2 + y**2 < 2 else 2
# very simple dataset
label = 0 if x < 0 else 1 if y < 0 else 2
pts.append(([x, y], label))
# create train/val/test splits of the data (80%, 10%, 10%)
tr = pts[:int(0.8*n)]
val = pts[int(0.8*n):int(0.9*n)]
te = pts[int(0.9*n):]
return tr, val, te
train_split, val_split, test_split = gen_data()
# init the model: 2D inputs, 16 neurons, 3 outputs (logits)
model = MLP(2, [16, 3])
def eval_split(model, split):
# evaluate the loss of a split
loss = Value(0)
for x, y in split:
logits = model([Value(x[0]), Value(x[1])])
loss += nll_loss(logits, y)
loss = loss * (1.0/len(split)) # normalize the loss
return loss.data
# optimize using Adam
learning_rate = 1e-1
beta1 = 0.9
beta2 = 0.95
weight_decay = 1e-4
for p in model.parameters():
p.m = 0.0
p.v = 0.0
# train
for step in range(100):
# evaluate the validation split every few steps
if step % 10 == 0:
val_loss = eval_split(model, val_split)
print(f"step {step}, val loss {val_loss}")
# forward the network (get logits of all training datapoints)
loss = Value(0)
for x, y in train_split:
logits = model([Value(x[0]), Value(x[1])])
loss += nll_loss(logits, y)
loss = loss * (1.0/len(train_split)) # normalize the loss
# backward pass (deposit the gradients)
loss.backward()
# update with Adam
for p in model.parameters():
p.m = beta1 * p.m + (1 - beta1) * p.grad
p.v = beta2 * p.v + (1 - beta2) * p.grad**2
p.data -= learning_rate * p.m / (p.v**0.5 + 1e-8)
p.data -= weight_decay * p.data # weight decay
model.zero_grad()
print(f"step {step}, train loss {loss.data}")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。