代码拉取完成,页面将自动刷新
#import cv2
import scipy.misc
#import ipdb
import numpy as np
from numpy import shape
#Some helper functions
def OneHot(X, n, negative_class=0.):
X = np.asarray(X).flatten()
if n is None:
n = np.max(X) + 1
Xoh = np.ones((len(X), n)) * negative_class
for i in range(len(X)):
m=X[i]
Xoh[i,m]=1
return Xoh
#For saving image-like scenarios map
def save_visualization(X, nh_nw, save_path='./vis/sample.jpg'):
h,w = X.shape[1], X.shape[2]
img = np.zeros((h * nh_nw[0], w * nh_nw[1], 3))
for n,x in enumerate(X):
j = n // nh_nw[1]
i = n % nh_nw[1]
img[j*h:j*h+h, i*w:i*w+w, :] = x
scipy.misc.imsave(save_path, img)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。