代码拉取完成,页面将自动刷新
同步操作将从 大奥特曼打小怪兽/opencv 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 15 11:00:02 2018
@author: zy
"""
import numpy as np
import cv2
from matplotlib import pyplot as plt
img1 = cv2.imread('./image/orb1.jpg',0)
img2 = cv2.imread('./image/orb2.jpg',0)
img2 = cv2.resize(img2,dsize=(450,300))
# Initiate SIFT detector
sift = cv2.xfeatures2d.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
# BFMatcher with default params
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2, k=2)
# Apply ratio test
good = []
for m,n in matches:
if m.distance < 0.75*n.distance:
good.append([m])
# cv2.drawMatchesKnn expects list of lists as matches.
img3 = None
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,img3,flags=2)
plt.imshow(img3),plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。