代码拉取完成,页面将自动刷新
import folder_paths
import hashlib
import json
import os
import requests
import shutil
def get_preview_path(name, type):
file_name = os.path.splitext(name)[0]
file_path = folder_paths.get_full_path(type, name)
if file_path is None:
print(f"Unable to get path for {type} {name}")
return None
file_path_no_ext = os.path.splitext(file_path)[0]
item_image=None
for ext in ["png", "jpg", "jpeg", "preview.png"]:
has_image = os.path.isfile(file_path_no_ext + "." + ext)
if has_image:
item_image = f"{file_name}.{ext}"
break
return has_image, item_image
def copy_preview_to_temp(file_name):
if file_name is None:
return None, None
base_name = os.path.basename(file_name)
lora_less = "/".join(file_name.split("/")[1:])
file_path = folder_paths.get_full_path("loras", lora_less)
if file_path is None:
return None, None
temp_path = folder_paths.get_temp_directory()
preview_path = os.path.join(temp_path, "lora_preview")
if not os.path.isdir(preview_path) :
os.makedirs(preview_path)
preview_path = os.path.join(preview_path, base_name)
shutil.copyfile(file_path, preview_path)
return preview_path, base_name
# add previews in selectors
def populate_items(names, type):
for idx, item_name in enumerate(names):
has_image, item_image = get_preview_path(item_name, type)
names[idx] = {
"content": item_name,
"image": f"{type}/{item_image}" if has_image else None,
"type": "loras",
}
names.sort(key=lambda i: i["content"].lower())
def load_json_from_file(file_path):
try:
with open(file_path, 'r') as json_file:
data = json.load(json_file)
return data
except FileNotFoundError:
print(f"File not found: {file_path}")
return None
except json.JSONDecodeError:
print(f"Error decoding JSON in file: {file_path}")
raise
def save_dict_to_json(data_dict, file_path):
try:
with open(file_path, 'w') as json_file:
json.dump(data_dict, json_file, indent=4)
print(f"Data saved to {file_path}")
except Exception as e:
print(f"Error saving JSON to file: {e}")
def get_model_version_info(hash_value):
api_url = f"https://civitai.com/api/v1/model-versions/by-hash/{hash_value}"
response = requests.get(api_url)
if response.status_code == 200:
return response.json()
else:
return None
def calculate_sha256(file_path):
sha256_hash = hashlib.sha256()
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
sha256_hash.update(chunk)
return sha256_hash.hexdigest()
def load_and_save_tags(lora_name, force_fetch):
json_tags_path = "./loras_tags.json"
lora_tags = load_json_from_file(json_tags_path)
output_tags = lora_tags.get(lora_name, None) if lora_tags is not None else None
if output_tags is not None:
output_tags_list = output_tags
else:
output_tags_list = []
lora_path = folder_paths.get_full_path("loras", lora_name)
if lora_tags is None or force_fetch or output_tags is None: # search on civitai only if no local cache or forced
print("[Lora-Auto-Trigger] calculating lora hash")
LORAsha256 = calculate_sha256(lora_path)
print("[Lora-Auto-Trigger] requesting infos")
model_info = get_model_version_info(LORAsha256)
if model_info is not None:
if "trainedWords" in model_info:
print("[Lora-Auto-Trigger] tags found!")
if lora_tags is None:
lora_tags = {}
lora_tags[lora_name] = model_info["trainedWords"]
save_dict_to_json(lora_tags, json_tags_path)
output_tags_list = model_info["trainedWords"]
else:
print("[Lora-Auto-Trigger] No informations found.")
if lora_tags is None:
lora_tags = {}
lora_tags[lora_name] = []
save_dict_to_json(lora_tags,json_tags_path)
return output_tags_list
def show_list(list_input):
i = 0
output = ""
for debug in list_input:
output += f"{i} : {debug}\n"
i+=1
return output
def get_metadata(filepath, type):
filepath = folder_paths.get_full_path(type, filepath)
with open(filepath, "rb") as file:
# https://github.com/huggingface/safetensors#format
# 8 bytes: N, an unsigned little-endian 64-bit integer, containing the size of the header
header_size = int.from_bytes(file.read(8), "little", signed=False)
if header_size <= 0:
raise BufferError("Invalid header size")
header = file.read(header_size)
if header_size <= 0:
raise BufferError("Invalid header")
header_json = json.loads(header)
return header_json["__metadata__"] if "__metadata__" in header_json else None
# parse the __metadata__ json looking for trained tags
def sort_tags_by_frequency(meta_tags):
if meta_tags is None:
return []
if "ss_tag_frequency" in meta_tags:
meta_tags = meta_tags["ss_tag_frequency"]
meta_tags = json.loads(meta_tags)
sorted_tags = {}
for _, dataset in meta_tags.items():
for tag, count in dataset.items():
tag = str(tag).strip()
if tag in sorted_tags:
sorted_tags[tag] = sorted_tags[tag] + count
else:
sorted_tags[tag] = count
# sort tags by training frequency. Most seen tags firsts
sorted_tags = dict(sorted(sorted_tags.items(), key=lambda item: item[1], reverse=True))
return list(sorted_tags.keys())
else:
return []
def parse_selector(selector, tags_list):
if len(tags_list) == 0:
return ""
range_index_list = selector.split(",")
output = {}
for range_index in range_index_list:
# single value
if range_index.count(":") == 0:
# remove empty values
if range_index.strip() == "":
continue
index = int(range_index)
# ignore out of bound indexes
if abs(index) > len(tags_list) - 1:
continue
output[index] = tags_list[index]
# actual range
if range_index.count(":") == 1:
indexes = range_index.split(":")
# check empty
if indexes[0] == "":
start = 0
else:
start = int(indexes[0])
if indexes[1] == "":
end = len(tags_list)
else:
end = int(indexes[1])
# check negative
if start < 0:
start = len(tags_list) + start
if end < 0:
end = len(tags_list) + end
# clamp start and end values within list boundaries
start, end = min(start, len(tags_list)), min(end, len(tags_list))
start, end = max(start, 0), max(end, 0)
# merge all
for i in range(start, end):
output[i] = tags_list[i]
return ", ".join(list(output.values()))
def append_lora_name_if_empty(tags_list, lora_path, enabled):
if not enabled or len(tags_list) > 0:
return tags_list
filename = os.path.splitext(lora_path)[0]
filename = os.path.basename(filename)
tags_list.append(filename)
return tags_list
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。