5 Star 16 Fork 27

孙连城/backtesting

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
run_optimization.py 9.44 KB
一键复制 编辑 原始数据 按行查看 历史
sunliancheng1011@163.com 提交于 2019-10-21 11:27 . CTA回测框架
from backtesting.cta_backtesting import BacktestingEngine
from backtesting.optimization_setting import OptimizationSetting
from strategies.bolling_strategy import BollingStrategy
import multiprocessing
import csv
import os
import time
import json
class OptimizationEngine():
"""
参数优化引擎
"""
def __init__(self,
target_name: str,
strategy_class:str,
symbol: str,
exchange:str,
interval: str,
start: str,
end: str,
rate: float,
slippage: float,
size: float,
capital: int,
backtest_period:list,
):
"""
设置参数优化引擎参数
:param target_name:优化指标(total_return,max_drawdown,sharpe_ratio)
:param strategy_class:策略类名
:param symbol:交易对
:param exchange:交易所
:param interval:原始数据周期
:param start:开始日期
:param end:结束日期
:param rate:手续费
:param slippage:滑点
:param size:每次下单量
:param capital:初始资金量
"""
self.target_name = target_name
self.strategy_class = strategy_class
self.symbol = symbol
self.exchange = exchange
self.start = start
self.end = end
#初始化回测引擎
self.engine = BacktestingEngine()
self.engine.set_parameters(
symbol=symbol,
exchange=exchange,
interval=interval,
start=start,
end=end,
rate=rate,
slippage=slippage,
size=size,
capital=capital,
backtest_period=backtest_period
)
#载入历史数据,并转换周期
self.engine.load_data()
def optimize(self,
setting: list,
backtest_period:str,
):
"""
执行策略参数优化
:param setting: 策略参数
:param backtest_period: 策略周期
:return:
"""
self.engine.init_backtesting()
self.engine.add_strategy(self.strategy_class,backtest_period,setting)
self.engine.run_backtesting()
self.engine.calculate_result()
statistics = self.engine.calculate_statistics(output=False)
target_value = statistics[self.target_name]
return (backtest_period,str(setting), target_value, statistics)
def output_results(self,results):
"""
输出参数优化结果,按优化指标排序,并将各参数结果输出到CSV文件
:param results: 回测结果列表
:return:
"""
result_values = [result.get() for result in results]
result_values.sort(reverse=True, key=lambda result: result[2])
if(os.path.exists("../results/{strategy}"
.format(strategy=self.strategy_class.__name__)) is False):
os.makedirs("../results/{strategy}"
.format(strategy=self.strategy_class.__name__))
file_name = "../results/{strategy}/{exchange}_{symbol}_{start}_{end}.csv" \
.format(strategy=self.strategy_class.__name__,
exchange=self.exchange,
symbol=self.symbol,
start=self.start.split(" ")[0].replace("-",""),
end=self.end.split(" ")[0].replace("-",""))
out = open(file_name, 'a', newline='')
csv_writer = csv.writer(out, dialect='excel')
csv_writer.writerow(['周期', '参数', '起始资金', '结束资金', '总收益率', '年化收益', '最大回撤'
, '百分比最大回撤', '总交易日', '盈利交易日', '亏损交易日', '总盈亏'
, '收益标准差', 'Sharpe Ratio', '收益回撤比'
, '总手续费', '总滑点', '总成交金额', '总成交笔数', '日均盈亏', '日均手续费'
, '日均成交金额', '日均成交笔数', '日均收益率'
])
for value in result_values:
if(value[2] != 0):
data = [value[0], value[1], value[3]['capital'],
value[3]['end_balance'], value[3]['total_return'], value[3]['annual_return'],
value[3]['max_drawdown'], value[3]['max_ddpercent'], value[3]['total_days'],
value[3]['profit_days'], value[3]['loss_days'], value[3]['total_net_pnl'],
value[3]['return_std'], value[3]['sharpe_ratio'], value[3]['return_drawdown_ratio'],
value[3]['total_commission'], value[3]['total_slippage'], value[3]['total_turnover'],
value[3]['total_trade_count'], value[3]['daily_net_pnl'], value[3]['daily_commission'],
value[3]['daily_turnover'], value[3]['daily_trade_count'], value[3]['daily_return']]
csv_writer.writerow(data)
msg = f"周期:{value[0]},参数:{value[1]}, 目标:{value[2]}"
print(msg)
if __name__ == '__main__':
start_time = time.time()
#回测交易对列表
symbol_list = [["BTCUSDT",1,10000],
#["ETHUSDT",10,10000],
#["EOSUSDT",200,10000],
#["LTCUSDT",20,10000],
#["ETCUSDT",200,10000]
]
#回测周期列表
period_list = ["15T","30T","60T"]
#回测时间,用start_date和end_date之间的数据进行回测。
#再选取回测结果最优的10条,再验证end_date和check_date之间的结果
start_date = "2019-09-01 00:00:00"
end_date = "2019-09-20 00:00:00"
check_date = "2019-10-01 00:00:00"
check = True
check_num = 30
#逐个交易对进行参数优化
for symbol in symbol_list:
try:
optimization_setting = OptimizationSetting()
#设置回测周期,可设置多个周期
optimization_setting.set_period(period_list)
#设置参数优化目标,默认为按收益率
optimization_setting.set_target(target_name="total_return")
#设置各回测参数的范围和步长
optimization_setting.add_parameter(name="n", start=50, end=500, step=10)
optimization_setting.add_parameter(name="m", start=1, end=10, step=1)
optimization_setting.add_parameter(name="stop_lose_pct", start=5, end=15, step=5)
#生成回测参数列表
settings = optimization_setting.generate_setting()
target_name = optimization_setting.target_name
#新建进程池
pool = multiprocessing.Pool(multiprocessing.cpu_count()-2)
total_num = len(settings)*len(period_list)
print(f"{symbol}开始回测参数优化,参数组合{total_num}种")
#初始化参数优化引擎
optimization_engine = OptimizationEngine(
target_name,
BollingStrategy,
symbol[0],
"BINANCE",
"1m",
start_date,
end_date,
0.001,
0,
symbol[1],
symbol[2],
period_list
)
results = []
# 将回测参数逐个加入进程池,利用多进程进行回测
for period in period_list:
for setting in settings:
try:
result = (pool.apply_async(optimization_engine.optimize, (
setting,period
)))
results.append(result)
except Exception as e:
print(setting,e)
#输出回测结果
optimization_engine.output_results(results)
#开始回测参数验证
if check:
print(f"{symbol[0]}开始回测验证")
# 初始化验证引擎
check_results = []
check_engine = OptimizationEngine(
target_name,
BollingStrategy,
symbol[0],
"BINANCE",
"1m",
end_date,
check_date,
0.001,
0,
symbol[1],
symbol[2],
period_list
)
# 按优化结果排序
result_values = [result.get() for result in results]
result_values.sort(reverse=True, key=lambda result: result[2])
num = 0
for value in result_values:
if(value[2] !=0):
num += 1
if(num>check_num):
break
check_result = (pool.apply_async(check_engine.optimize, (
json.loads(value[1]), value[0])))
check_results.append(check_result)
# 输出验证结果
check_engine.output_results(check_results)
pool.close()
pool.join()
except Exception as e:
print(symbol,e)
end_time = time.time()
print(f"总耗时:{int((end_time-start_time)/60)}分钟")
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/CryptoTrader/backtesting.git
git@gitee.com:CryptoTrader/backtesting.git
CryptoTrader
backtesting
backtesting
master

搜索帮助