1 Star 0 Fork 0

wamwamja/learn-tensorflow

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
mnist.py 1.02 KB
一键复制 编辑 原始数据 按行查看 历史
wamwamja 提交于 2017-12-12 06:00 . mnist-deep
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
## model
# y = softmax(W.x + b)
x = tf.placeholder(tf.float32, [None, 784]) # None stands for any
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
# entropy H_{y} = - \sum_{i} y_i \log(y_i)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
# train
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# do it
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x:batch_xs,y_:batch_ys})
## evaluation
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy,feed_dict={x:mnist.test.images, y_:mnist.test.labels}))
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/CharlieLUO/learn-tensorflow.git
git@gitee.com:CharlieLUO/learn-tensorflow.git
CharlieLUO
learn-tensorflow
learn-tensorflow
master

搜索帮助