代码拉取完成,页面将自动刷新
# @Author: yican, yelanlan
# @Date: 2020-07-07 14:47:29
# @Last Modified by: yican
# @Last Modified time: 2020-07-07 14:47:29
# Standard libraries
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
# Third party libraries
import torch
from dataset import generate_transforms
from sklearn.model_selection import KFold
from scipy.special import softmax
from torch.utils.data import DataLoader
from tqdm import tqdm
# User defined libraries
from train import CoolSystem
from utils import init_hparams, init_logger, seed_reproducer, load_data
from dataset import PlantDataset
if __name__ == "__main__":
# Make experiment reproducible
seed_reproducer(2020)
# Init Hyperparameters
hparams = init_hparams()
# init logger
logger = init_logger("kun_out", log_dir=hparams.log_dir)
# Load data
data, test_data = load_data(logger)
# Generate transforms
transforms = generate_transforms(hparams.image_size)
early_stop_callback = EarlyStopping(monitor="val_roc_auc", patience=10, mode="max", verbose=True)
# Instance Model, Trainer and train model
model = CoolSystem(hparams)
trainer = pl.Trainer(
gpus=hparams.gpus,
min_epochs=70,
max_epochs=hparams.max_epochs,
early_stop_callback=early_stop_callback,
progress_bar_refresh_rate=0,
precision=hparams.precision,
num_sanity_val_steps=0,
profiler=False,
weights_summary=None,
use_dp=True,
gradient_clip_val=hparams.gradient_clip_val,
)
submission = []
PATH = [
"logs_submit/fold=0-epoch=42-val_loss=0.1807-val_roc_auc=0.9931.ckpt",
"logs_submit/fold=1-epoch=46-val_loss=0.1486-val_roc_auc=0.9946.ckpt",
"logs_submit/fold=2-epoch=47-val_loss=0.1212-val_roc_auc=0.9952.ckpt",
"logs_submit/fold=3-epoch=41-val_loss=0.1005-val_roc_auc=0.9884.ckpt",
"logs_submit/fold=4-epoch=66-val_loss=0.1144-val_roc_auc=0.9913.ckpt",
]
folds = KFold(n_splits=5, shuffle=True, random_state=hparams.seed)
train_data_cp = []
for fold_i, (train_index, val_index) in enumerate(folds.split(data)):
hparams.fold_i = fold_i
train_data = data.iloc[train_index, :].reset_index(drop=True)
val_data = data.iloc[val_index, :].reset_index(drop=True)
val_data_cp = val_data.copy()
val_dataset = PlantDataset(
val_data, transforms=transforms["val_transforms"], soft_labels_filename=hparams.soft_labels_filename
)
val_dataloader = DataLoader(
val_dataset,
batch_size=64,
shuffle=False,
num_workers=hparams.num_workers,
pin_memory=True,
drop_last=False,
)
submission = []
model.load_state_dict(torch.load(PATH[fold_i])["state_dict"])
model.to("cuda")
model.eval()
for i in range(1):
val_preds = []
labels = []
with torch.no_grad():
for image, label, times in tqdm(val_dataloader):
val_preds.append(model(image.to("cuda")))
labels.append(label)
labels = torch.cat(labels)
val_preds = torch.cat(val_preds)
submission.append(val_preds.cpu().numpy())
submission_ensembled = 0
for sub in submission:
submission_ensembled += softmax(sub, axis=1) / len(submission)
val_data_cp.iloc[:, 1:] = submission_ensembled
train_data_cp.append(val_data_cp)
soft_labels = data[["image_id"]].merge(pd.concat(train_data_cp), how="left", on="image_id")
soft_labels.to_csv("soft_labels.csv", index=False)
# ==============================================================================================================
# Generate Submission file
# ==============================================================================================================
test_dataset = PlantDataset(
test_data, transforms=transforms["train_transforms"], soft_labels_filename=hparams.soft_labels_filename
)
test_dataloader = DataLoader(
test_dataset, batch_size=64, shuffle=False, num_workers=hparams.num_workers, pin_memory=True, drop_last=False,
)
submission = []
for path in PATH:
model.load_state_dict(torch.load(path)["state_dict"])
model.to("cuda")
model.eval()
for i in range(8):
test_preds = []
labels = []
with torch.no_grad():
for image, label, times in tqdm(test_dataloader):
test_preds.append(model(image.to("cuda")))
labels.append(label)
labels = torch.cat(labels)
test_preds = torch.cat(test_preds)
submission.append(test_preds.cpu().numpy())
submission_ensembled = 0
for sub in submission:
submission_ensembled += softmax(sub, axis=1) / len(submission)
test_data.iloc[:, 1:] = submission_ensembled
test_data.to_csv("submission.csv", index=False)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。