1 Star 1 Fork 5

zhenghua/Scrpay

forked from 梁新斌/Scrpay 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
Vsualization.py 10.98 KB
一键复制 编辑 原始数据 按行查看 历史
梁新斌 提交于 2019-03-02 14:52 . 数据可视化
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pymongo
from pandas import DataFrame,Series
import matplotlib.pyplot as plt
import numpy as np
#绘制饼图
def ksh_pie():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['WeatherItem'] # 指定集合
prods = collection.find({'cityname':'beijing'})
prods.sort('data')
data = DataFrame(list(prods))
##data.sort_values(by='data',ascending=False) #data列的读入方式不是时间类型,排序并非预想
data = data.drop(['_id'], axis=1) #在DF中删除_id字段
data = data[data['data'] >= '20171101']
data = data[data['data'] <= '20171231' ]
data = data['tq']
data = data.value_counts()
data1 = data[data>0]
# print(data.values)
# print(data.index)
# print(data)
labels = data1.index # 显示在图形上的标签
sizes = data1.values # 要在图中显示的数据
explodes = np.zeros(len(labels))
explodes[0] = 0.1 #图形中的偏移量,此处设置占比最大的部分偏移0.1
#解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explodes ,labels=labels, autopct='%1.1f%%',shadow=True, startangle=90)
ax1.axis('equal')
ax1.set(title="北京市天气状况")
plt.show()
#条形图
def ksh_bar():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['WeatherItem'] # 指定集合
prods = collection.find({'cityname': 'beijing'})
prods.sort('data')
data = DataFrame(list(prods))
data = data.drop(['_id'], axis=1) # 在DF中删除_id字段
data = data['tq']
data = data.value_counts()
data1 = data[data > 50]
shanghai = collection.find({'cityname': 'tianjin'})
shanghai.sort('data')
sh = DataFrame(list(shanghai))
sh = sh.drop(['_id'], axis=1) # 在DF中删除_id字段
sh = sh['tq']
sh = sh.value_counts()
sh1 = sh[sh > 50]
indbj = np.arange(len(data1.values))
indsh = np.arange(len(sh1.values))
width = 0.3
fig, ax = plt.subplots()
rects1 = ax.bar(indbj - width/2, data1.values, width,color='SkyBlue', label='Beijing')
rects2 = ax.bar(indsh + width/2, sh1.values, width,color='IndianRed', label='Tianjin')
# # Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('次数')
ax.set_title('北京天津城市天气情况')
ax.set_xlabel('天气状况')
ax.set_xticklabels((data1.index))
ax.legend()
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.show()
#折线图
def ksh_plot():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['WeatherItem'] # 指定集合
prods = collection.find({'cityname': 'beijing'})
prods.sort('data')
data = DataFrame(list(prods))
data = data.drop(['_id'], axis=1) # 在DF中删除_id字段
data = data[data['data'] >= '20190101']
date = data['data']
maxtemp = data['maxtemp']
mintemp = data['mintemp']
# # # Data for plotting
fig, ax = plt.subplots()
ax.plot(date.values, maxtemp.values,'.-')
ax.plot(date.values, mintemp.values,'.-')
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
ax.set(xlabel='日期', ylabel='温度',title='北京天气')
ax.grid() #出现图后面的网格
plt.show()
#水平折线图
def ksh_barh():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['WeatherItem'] # 指定集合
prods = collection.find({'cityname': 'beijing'})
prods.sort('data')
data = DataFrame(list(prods))
data = data.drop(['_id'], axis=1) # 在DF中删除_id字段
data = data['tq']
data = data.value_counts()
data1 = data[data > 50]
# print(data1)
plt.rcdefaults()
fig, ax = plt.subplots()
tq = data1.index
date = data1.values
y_pos = np.arange(len(tq))
performance = 3 + 10 * np.random.rand(len(tq))
error = np.random.rand(len(tq))
ax.barh(y_pos, performance, align='center', color='green', ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(tq)
ax.set_xticklabels(date)
ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel('次数')
ax.set_title('北京天气')
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.show()
def daxue_zhanbi():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['daxue'] # 指定集合
daxue = collection.find()
dx_data = DataFrame(list(daxue))
dx_data = dx_data.drop(['_id'],axis=1)
df_jibei = dx_data['jibei']
df = df_jibei.value_counts()
print(df)
labels = df.index # 显示在图形上的标签
sizes = df.values # 要在图中显示的数据
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig1, ax1 = plt.subplots()
ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) # 使用pie()方法绘制饼图。
ax1.axis('equal')
ax1.set(title="全国高校本科专科占比") # 设置饼图标题
plt.show()
def daxue_shuliang():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['daxue'] # 指定集合
daxue = collection.find()
dx_data = DataFrame(list(daxue))
dx_data = dx_data.drop(['_id'], axis=1)
df = dx_data['province']
df1 = df.value_counts()
ind = np.arange(len(df1.values))
width = 0.8
fig, ax = plt.subplots()
rects1 = ax.bar(ind,df1.values, width, color='SkyBlue')
# # Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('数量')
ax.set_title('全国高校分布情况')
ax.set_xlabel('省份')
ax.set_xticklabels((df1.index))
ax.legend()
x = np.arange(len(df1.index))
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.yticks(np.arange(0, 180, 10)) # 设置y轴的刻度范围
plt.xticks(x, df1.index, rotation=45, fontsize=9) # 设置x轴上显示的省份个数
# 在图形上面添加数值,并设置数值的位置
# for x, y in enumerate(df1.values):
# plt.text(x, y + 100, '%s' % round(y,2), ha='left')
plt.show()
def daxue_shuliang_city():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['daxue'] # 指定集合
daxue = collection.find()
dx_data = DataFrame(list(daxue))
dx_data = dx_data.drop(['_id'], axis=1)
df = dx_data['diqu']
df1 = df.value_counts()
df1 = df1[df1.values >= 15] #因城市数量太多,所以我们只取了大学数量超过15的城市做比对
ind = np.arange(len(df1.values))
width = 0.5
fig, ax = plt.subplots()
rects1 = ax.bar(ind,df1.values, width, color='SkyBlue')
# # Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_title('全国高校分布情况')
ax.set_xlabel('城市')
ax.set_ylabel('数量')
ax.set_xticklabels((df1.index))
ax.legend()
x = np.arange(len(df1.index))
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.yticks(np.arange(0, 100, 10)) # 设置y轴的刻度范围
plt.xticks(x, df1.index, rotation=45, fontsize=9) # 设置x轴上显示的省份个数
# 在图形上面添加数值,并设置数值的位置
# for x, y in enumerate(df1.values):
# plt.text(x, y + 100, '%s' % round(y,2), ha='left')
plt.show()
def daxue_shuliang_prov_jiangsu():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['daxue'] # 指定集合
daxue = collection.find()
dx_data = DataFrame(list(daxue))
dx_data = dx_data.drop(['_id'], axis=1)
dx_data = dx_data[dx_data['province'] == '江苏省']
dx_data = dx_data.sort_values('diqu')
df1 = dx_data['diqu']
df1 = df1.value_counts()
ind = np.arange(len(df1.values))
width = 0.5
fig, ax = plt.subplots()
rects1 = ax.bar(ind,df1.values, width, color='SkyBlue')
# # # Add some text for labels, title and custom x-axis tick labels, etc.
#
ax.set_title('江苏省高校分布情况')
ax.set_xlabel('城市')
ax.set_ylabel('数量')
ax.set_xticklabels((df1.index))
ax.legend()
#
x = np.arange(len(df1.index))
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.yticks(np.arange(0, 60, 10)) # 设置y轴的刻度范围
plt.xticks(x, df1.index, rotation=45, fontsize=9) # 设置x轴上显示的省份个数
# 在图形上面添加数值,并设置数值的位置
# for x, y in enumerate(df1.values):
# plt.text(x, y + 100, '%s' % round(y,2), ha='left')
plt.show()
def daxue_shuliang_prov_mean():
client = pymongo.MongoClient(host='localhost', port=27017)
db = client['test'] # 指定数据库
collection = db['daxue'] # 指定集合
daxue = collection.find()
dx_data = DataFrame(list(daxue))
dx_data = dx_data.drop(['_id'], axis=1)
# print(dx_data)
dx_prov = dx_data.groupby('province')
dx_avg_list = []
for name, group in dx_prov:
dx_avg_dic = {}
if name in ('北京市', '天津市', '重庆市', '上海市'):
continue
dx_avg_dic['prov'] = name
dx_avg_dic['avg'] = (group['province'].count()/len(group.groupby('diqu')['name'].count())).round(decimals=2)
dx_avg_list.append(dx_avg_dic)
dx_df = DataFrame(list(dx_avg_list))
df1 = dx_df.sort_values('avg',ascending=False)
print(df1)
ind = np.arange(len(df1['avg']))
width = 0.5
fig, ax = plt.subplots()
rects1 = ax.bar(ind, df1['avg'], width, color='SkyBlue')
# # # Add some text for labels, title and custom x-axis tick labels, etc.
#
ax.set_title('全国省份平均高校数量')
ax.set_xlabel('省份')
ax.set_ylabel('数量')
ax.set_xticklabels(df1['prov'])
ax.legend()
x = np.arange(len(df1['avg']))
# 解决中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.yticks(np.arange(0, 15, 10)) # 设置y轴的刻度范围
plt.xticks(x, df1.prov, rotation=45, fontsize=9) # 设置x轴上显示的省份个数
plt.show()
if __name__ == '__main__':
daxue_shuliang_prov_mean()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhenghua0501/Scrpay.git
git@gitee.com:zhenghua0501/Scrpay.git
zhenghua0501
Scrpay
Scrpay
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385