1 Star 0 Fork 488

张文强/ML-AndrewNg-Notes

forked from scruel/Notes-ML-AndrewNg 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
week5.html 699.47 KB
一键复制 编辑 原始数据 按行查看 历史
scruel 提交于 2021-02-01 12:04 . optimize math block
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
<!doctype html>
<html>
<head>
<meta charset='UTF-8'><meta name='viewport' content='width=device-width initial-scale=1'>
<title>week5</title><link href='https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext' rel='stylesheet' type='text/css' /><style type='text/css'>html {overflow-x: initial !important;}:root { --bg-color:#ffffff; --text-color:#333333; --select-text-bg-color:#B5D6FC; --select-text-font-color:auto; --monospace:"Lucida Console",Consolas,"Courier",monospace; --title-bar-height:20px; }
.mac-os-11 { --title-bar-height:28px; }
html { font-size: 14px; background-color: var(--bg-color); color: var(--text-color); font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; -webkit-font-smoothing: antialiased; }
body { margin: 0px; padding: 0px; height: auto; bottom: 0px; top: 0px; left: 0px; right: 0px; font-size: 1rem; line-height: 1.42857; overflow-x: hidden; background: inherit; tab-size: 4; }
iframe { margin: auto; }
a.url { word-break: break-all; }
a:active, a:hover { outline: 0px; }
.in-text-selection, ::selection { text-shadow: none; background: var(--select-text-bg-color); color: var(--select-text-font-color); }
#write { margin: 0px auto; height: auto; width: inherit; word-break: normal; overflow-wrap: break-word; position: relative; white-space: normal; overflow-x: visible; padding-top: 36px; }
#write.first-line-indent p { text-indent: 2em; }
#write.first-line-indent li p, #write.first-line-indent p * { text-indent: 0px; }
#write.first-line-indent li { margin-left: 2em; }
.for-image #write { padding-left: 8px; padding-right: 8px; }
body.typora-export { padding-left: 30px; padding-right: 30px; }
.typora-export .footnote-line, .typora-export li, .typora-export p { white-space: pre-wrap; }
.typora-export .task-list-item input { pointer-events: none; }
@media screen and (max-width: 500px) {
body.typora-export { padding-left: 0px; padding-right: 0px; }
#write { padding-left: 20px; padding-right: 20px; }
.CodeMirror-sizer { margin-left: 0px !important; }
.CodeMirror-gutters { display: none !important; }
}
#write li > figure:last-child { margin-bottom: 0.5rem; }
#write ol, #write ul { position: relative; }
img { max-width: 100%; vertical-align: middle; image-orientation: from-image; }
button, input, select, textarea { color: inherit; font: inherit; }
input[type="checkbox"], input[type="radio"] { line-height: normal; padding: 0px; }
*, ::after, ::before { box-sizing: border-box; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p, #write pre { width: inherit; }
#write h1, #write h2, #write h3, #write h4, #write h5, #write h6, #write p { position: relative; }
p { line-height: inherit; }
h1, h2, h3, h4, h5, h6 { break-after: avoid-page; break-inside: avoid; orphans: 4; }
p { orphans: 4; }
h1 { font-size: 2rem; }
h2 { font-size: 1.8rem; }
h3 { font-size: 1.6rem; }
h4 { font-size: 1.4rem; }
h5 { font-size: 1.2rem; }
h6 { font-size: 1rem; }
.md-math-block, .md-rawblock, h1, h2, h3, h4, h5, h6, p { margin-top: 1rem; margin-bottom: 1rem; }
.hidden { display: none; }
.md-blockmeta { color: rgb(204, 204, 204); font-weight: 700; font-style: italic; }
a { cursor: pointer; }
sup.md-footnote { padding: 2px 4px; background-color: rgba(238, 238, 238, 0.7); color: rgb(85, 85, 85); border-radius: 4px; cursor: pointer; }
sup.md-footnote a, sup.md-footnote a:hover { color: inherit; text-transform: inherit; text-decoration: inherit; }
#write input[type="checkbox"] { cursor: pointer; width: inherit; height: inherit; }
figure { overflow-x: auto; margin: 1.2em 0px; max-width: calc(100% + 16px); padding: 0px; }
figure > table { margin: 0px; }
tr { break-inside: avoid; break-after: auto; }
thead { display: table-header-group; }
table { border-collapse: collapse; border-spacing: 0px; width: 100%; overflow: auto; break-inside: auto; text-align: left; }
table.md-table td { min-width: 32px; }
.CodeMirror-gutters { border-right: 0px; background-color: inherit; }
.CodeMirror-linenumber { user-select: none; }
.CodeMirror { text-align: left; }
.CodeMirror-placeholder { opacity: 0.3; }
.CodeMirror pre { padding: 0px 4px; }
.CodeMirror-lines { padding: 0px; }
div.hr:focus { cursor: none; }
#write pre { white-space: pre-wrap; }
#write.fences-no-line-wrapping pre { white-space: pre; }
#write pre.ty-contain-cm { white-space: normal; }
.CodeMirror-gutters { margin-right: 4px; }
.md-fences { font-size: 0.9rem; display: block; break-inside: avoid; text-align: left; overflow: visible; white-space: pre; background: inherit; position: relative !important; }
.md-diagram-panel { width: 100%; margin-top: 10px; text-align: center; padding-top: 0px; padding-bottom: 8px; overflow-x: auto; }
#write .md-fences.mock-cm { white-space: pre-wrap; }
.md-fences.md-fences-with-lineno { padding-left: 0px; }
#write.fences-no-line-wrapping .md-fences.mock-cm { white-space: pre; overflow-x: auto; }
.md-fences.mock-cm.md-fences-with-lineno { padding-left: 8px; }
.CodeMirror-line, twitterwidget { break-inside: avoid; }
.footnotes { opacity: 0.8; font-size: 0.9rem; margin-top: 1em; margin-bottom: 1em; }
.footnotes + .footnotes { margin-top: 0px; }
.md-reset { margin: 0px; padding: 0px; border: 0px; outline: 0px; vertical-align: top; background: 0px 0px; text-decoration: none; text-shadow: none; float: none; position: static; width: auto; height: auto; white-space: nowrap; cursor: inherit; -webkit-tap-highlight-color: transparent; line-height: normal; font-weight: 400; text-align: left; box-sizing: content-box; direction: ltr; }
li div { padding-top: 0px; }
blockquote { margin: 1rem 0px; }
li .mathjax-block, li p { margin: 0.5rem 0px; }
li blockquote { margin: 1rem 0px; }
li { margin: 0px; position: relative; }
blockquote > :last-child { margin-bottom: 0px; }
blockquote > :first-child, li > :first-child { margin-top: 0px; }
.footnotes-area { color: rgb(136, 136, 136); margin-top: 0.714rem; padding-bottom: 0.143rem; white-space: normal; }
#write .footnote-line { white-space: pre-wrap; }
@media print {
body, html { border: 1px solid transparent; height: 99%; break-after: avoid; break-before: avoid; font-variant-ligatures: no-common-ligatures; }
#write { margin-top: 0px; padding-top: 0px; border-color: transparent !important; }
.typora-export * { -webkit-print-color-adjust: exact; }
.typora-export #write { break-after: avoid; }
.typora-export #write::after { height: 0px; }
.is-mac table { break-inside: avoid; }
}
.footnote-line { margin-top: 0.714em; font-size: 0.7em; }
a img, img a { cursor: pointer; }
pre.md-meta-block { font-size: 0.8rem; min-height: 0.8rem; white-space: pre-wrap; background: rgb(204, 204, 204); display: block; overflow-x: hidden; }
p > .md-image:only-child:not(.md-img-error) img, p > img:only-child { display: block; margin: auto; }
#write.first-line-indent p > .md-image:only-child:not(.md-img-error) img { left: -2em; position: relative; }
p > .md-image:only-child { display: inline-block; width: 100%; }
#write .MathJax_Display { margin: 0.8em 0px 0px; }
.md-math-block { width: 100%; }
.md-math-block:not(:empty)::after { display: none; }
.MathJax_ref { fill: currentcolor; }
[contenteditable="true"]:active, [contenteditable="true"]:focus, [contenteditable="false"]:active, [contenteditable="false"]:focus { outline: 0px; box-shadow: none; }
.md-task-list-item { position: relative; list-style-type: none; }
.task-list-item.md-task-list-item { padding-left: 0px; }
.md-task-list-item > input { position: absolute; top: 0px; left: 0px; margin-left: -1.2em; margin-top: calc(1em - 10px); border: none; }
.math { font-size: 1rem; }
.md-toc { min-height: 3.58rem; position: relative; font-size: 0.9rem; border-radius: 10px; }
.md-toc-content { position: relative; margin-left: 0px; }
.md-toc-content::after, .md-toc::after { display: none; }
.md-toc-item { display: block; color: rgb(65, 131, 196); }
.md-toc-item a { text-decoration: none; }
.md-toc-inner:hover { text-decoration: underline; }
.md-toc-inner { display: inline-block; cursor: pointer; }
.md-toc-h1 .md-toc-inner { margin-left: 0px; font-weight: 700; }
.md-toc-h2 .md-toc-inner { margin-left: 2em; }
.md-toc-h3 .md-toc-inner { margin-left: 4em; }
.md-toc-h4 .md-toc-inner { margin-left: 6em; }
.md-toc-h5 .md-toc-inner { margin-left: 8em; }
.md-toc-h6 .md-toc-inner { margin-left: 10em; }
@media screen and (max-width: 48em) {
.md-toc-h3 .md-toc-inner { margin-left: 3.5em; }
.md-toc-h4 .md-toc-inner { margin-left: 5em; }
.md-toc-h5 .md-toc-inner { margin-left: 6.5em; }
.md-toc-h6 .md-toc-inner { margin-left: 8em; }
}
a.md-toc-inner { font-size: inherit; font-style: inherit; font-weight: inherit; line-height: inherit; }
.footnote-line a:not(.reversefootnote) { color: inherit; }
.md-attr { display: none; }
.md-fn-count::after { content: "."; }
code, pre, samp, tt { font-family: var(--monospace); }
kbd { margin: 0px 0.1em; padding: 0.1em 0.6em; font-size: 0.8em; color: rgb(36, 39, 41); background: rgb(255, 255, 255); border: 1px solid rgb(173, 179, 185); border-radius: 3px; box-shadow: rgba(12, 13, 14, 0.2) 0px 1px 0px, rgb(255, 255, 255) 0px 0px 0px 2px inset; white-space: nowrap; vertical-align: middle; }
.md-comment { color: rgb(162, 127, 3); opacity: 0.8; font-family: var(--monospace); }
code { text-align: left; vertical-align: initial; }
a.md-print-anchor { white-space: pre !important; border-width: initial !important; border-style: none !important; border-color: initial !important; display: inline-block !important; position: absolute !important; width: 1px !important; right: 0px !important; outline: 0px !important; background: 0px 0px !important; text-decoration: initial !important; text-shadow: initial !important; }
.md-inline-math .MathJax_SVG .noError { display: none !important; }
.html-for-mac .inline-math-svg .MathJax_SVG { vertical-align: 0.2px; }
.md-math-block .MathJax_SVG_Display { text-align: center; margin: 0px; position: relative; text-indent: 0px; max-width: none; max-height: none; min-height: 0px; min-width: 100%; width: auto; overflow-y: hidden; display: block !important; }
.MathJax_SVG_Display, .md-inline-math .MathJax_SVG_Display { width: auto; margin: inherit; display: inline-block !important; }
.MathJax_SVG .MJX-monospace { font-family: var(--monospace); }
.MathJax_SVG .MJX-sans-serif { font-family: sans-serif; }
.MathJax_SVG { display: inline; font-style: normal; font-weight: 400; line-height: normal; zoom: 90%; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; }
.MathJax_SVG * { transition: none 0s ease 0s; }
.MathJax_SVG_Display svg { vertical-align: middle !important; margin-bottom: 0px !important; margin-top: 0px !important; }
.os-windows.monocolor-emoji .md-emoji { font-family: "Segoe UI Symbol", sans-serif; }
.md-diagram-panel > svg { max-width: 100%; }
[lang="flow"] svg, [lang="mermaid"] svg { max-width: 100%; height: auto; }
[lang="mermaid"] .node text { font-size: 1rem; }
table tr th { border-bottom: 0px; }
video { max-width: 100%; display: block; margin: 0px auto; }
iframe { max-width: 100%; width: 100%; border: none; }
.highlight td, .highlight tr { border: 0px; }
mark { background: rgb(255, 255, 0); color: rgb(0, 0, 0); }
.md-html-inline .md-plain, .md-html-inline strong, mark .md-inline-math, mark strong { color: inherit; }
mark .md-meta { color: rgb(0, 0, 0); opacity: 0.3 !important; }
@media print {
.typora-export h1, .typora-export h2, .typora-export h3, .typora-export h4, .typora-export h5, .typora-export h6 { break-inside: avoid; }
}
.md-diagram-panel .messageText { stroke: none !important; }
.md-diagram-panel .start-state { fill: var(--node-fill); }
.md-diagram-panel .edgeLabel rect { opacity: 1 !important; }
.md-require-zoom-fix foreignobject { font-size: var(--mermaid-font-zoom); }
.CodeMirror { height: auto; }
.CodeMirror.cm-s-inner { background: inherit; }
.CodeMirror-scroll { overflow: auto hidden; z-index: 3; }
.CodeMirror-gutter-filler, .CodeMirror-scrollbar-filler { background-color: rgb(255, 255, 255); }
.CodeMirror-gutters { border-right: 1px solid rgb(221, 221, 221); background: inherit; white-space: nowrap; }
.CodeMirror-linenumber { padding: 0px 3px 0px 5px; text-align: right; color: rgb(153, 153, 153); }
.cm-s-inner .cm-keyword { color: rgb(119, 0, 136); }
.cm-s-inner .cm-atom, .cm-s-inner.cm-atom { color: rgb(34, 17, 153); }
.cm-s-inner .cm-number { color: rgb(17, 102, 68); }
.cm-s-inner .cm-def { color: rgb(0, 0, 255); }
.cm-s-inner .cm-variable { color: rgb(0, 0, 0); }
.cm-s-inner .cm-variable-2 { color: rgb(0, 85, 170); }
.cm-s-inner .cm-variable-3 { color: rgb(0, 136, 85); }
.cm-s-inner .cm-string { color: rgb(170, 17, 17); }
.cm-s-inner .cm-property { color: rgb(0, 0, 0); }
.cm-s-inner .cm-operator { color: rgb(152, 26, 26); }
.cm-s-inner .cm-comment, .cm-s-inner.cm-comment { color: rgb(170, 85, 0); }
.cm-s-inner .cm-string-2 { color: rgb(255, 85, 0); }
.cm-s-inner .cm-meta { color: rgb(85, 85, 85); }
.cm-s-inner .cm-qualifier { color: rgb(85, 85, 85); }
.cm-s-inner .cm-builtin { color: rgb(51, 0, 170); }
.cm-s-inner .cm-bracket { color: rgb(153, 153, 119); }
.cm-s-inner .cm-tag { color: rgb(17, 119, 0); }
.cm-s-inner .cm-attribute { color: rgb(0, 0, 204); }
.cm-s-inner .cm-header, .cm-s-inner.cm-header { color: rgb(0, 0, 255); }
.cm-s-inner .cm-quote, .cm-s-inner.cm-quote { color: rgb(0, 153, 0); }
.cm-s-inner .cm-hr, .cm-s-inner.cm-hr { color: rgb(153, 153, 153); }
.cm-s-inner .cm-link, .cm-s-inner.cm-link { color: rgb(0, 0, 204); }
.cm-negative { color: rgb(221, 68, 68); }
.cm-positive { color: rgb(34, 153, 34); }
.cm-header, .cm-strong { font-weight: 700; }
.cm-del { text-decoration: line-through; }
.cm-em { font-style: italic; }
.cm-link { text-decoration: underline; }
.cm-error { color: red; }
.cm-invalidchar { color: red; }
.cm-constant { color: rgb(38, 139, 210); }
.cm-defined { color: rgb(181, 137, 0); }
div.CodeMirror span.CodeMirror-matchingbracket { color: rgb(0, 255, 0); }
div.CodeMirror span.CodeMirror-nonmatchingbracket { color: rgb(255, 34, 34); }
.cm-s-inner .CodeMirror-activeline-background { background: inherit; }
.CodeMirror { position: relative; overflow: hidden; }
.CodeMirror-scroll { height: 100%; outline: 0px; position: relative; box-sizing: content-box; background: inherit; }
.CodeMirror-sizer { position: relative; }
.CodeMirror-gutter-filler, .CodeMirror-hscrollbar, .CodeMirror-scrollbar-filler, .CodeMirror-vscrollbar { position: absolute; z-index: 6; display: none; }
.CodeMirror-vscrollbar { right: 0px; top: 0px; overflow: hidden; }
.CodeMirror-hscrollbar { bottom: 0px; left: 0px; overflow: hidden; }
.CodeMirror-scrollbar-filler { right: 0px; bottom: 0px; }
.CodeMirror-gutter-filler { left: 0px; bottom: 0px; }
.CodeMirror-gutters { position: absolute; left: 0px; top: 0px; padding-bottom: 30px; z-index: 3; }
.CodeMirror-gutter { white-space: normal; height: 100%; box-sizing: content-box; padding-bottom: 30px; margin-bottom: -32px; display: inline-block; }
.CodeMirror-gutter-wrapper { position: absolute; z-index: 4; background: 0px 0px !important; border: none !important; }
.CodeMirror-gutter-background { position: absolute; top: 0px; bottom: 0px; z-index: 4; }
.CodeMirror-gutter-elt { position: absolute; cursor: default; z-index: 4; }
.CodeMirror-lines { cursor: text; }
.CodeMirror pre { border-radius: 0px; border-width: 0px; background: 0px 0px; font-family: inherit; font-size: inherit; margin: 0px; white-space: pre; overflow-wrap: normal; color: inherit; z-index: 2; position: relative; overflow: visible; }
.CodeMirror-wrap pre { overflow-wrap: break-word; white-space: pre-wrap; word-break: normal; }
.CodeMirror-code pre { border-right: 30px solid transparent; width: fit-content; }
.CodeMirror-wrap .CodeMirror-code pre { border-right: none; width: auto; }
.CodeMirror-linebackground { position: absolute; left: 0px; right: 0px; top: 0px; bottom: 0px; z-index: 0; }
.CodeMirror-linewidget { position: relative; z-index: 2; overflow: auto; }
.CodeMirror-wrap .CodeMirror-scroll { overflow-x: hidden; }
.CodeMirror-measure { position: absolute; width: 100%; height: 0px; overflow: hidden; visibility: hidden; }
.CodeMirror-measure pre { position: static; }
.CodeMirror div.CodeMirror-cursor { position: absolute; visibility: hidden; border-right: none; width: 0px; }
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
.CodeMirror-focused div.CodeMirror-cursor { visibility: inherit; }
.cm-searching { background: rgba(255, 255, 0, 0.4); }
@media print {
.CodeMirror div.CodeMirror-cursor { visibility: hidden; }
}
:root {
--side-bar-bg-color: #fafafa;
--control-text-color: #777;
}
@include-when-export url(https://fonts.loli.net/css?family=Open+Sans:400italic,700italic,700,400&subset=latin,latin-ext);
/* open-sans-regular - latin-ext_latin */
/* open-sans-italic - latin-ext_latin */
/* open-sans-700 - latin-ext_latin */
/* open-sans-700italic - latin-ext_latin */
html {
font-size: 16px;
}
body {
font-family: "Open Sans","Clear Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
color: rgb(51, 51, 51);
line-height: 1.6;
}
#write {
max-width: 860px;
margin: 0 auto;
padding: 30px;
padding-bottom: 100px;
}
@media only screen and (min-width: 1400px) {
#write {
max-width: 1024px;
}
}
@media only screen and (min-width: 1800px) {
#write {
max-width: 1200px;
}
}
#write > ul:first-child,
#write > ol:first-child{
margin-top: 30px;
}
a {
color: #4183C4;
}
h1,
h2,
h3,
h4,
h5,
h6 {
position: relative;
margin-top: 1rem;
margin-bottom: 1rem;
font-weight: bold;
line-height: 1.4;
cursor: text;
}
h1:hover a.anchor,
h2:hover a.anchor,
h3:hover a.anchor,
h4:hover a.anchor,
h5:hover a.anchor,
h6:hover a.anchor {
text-decoration: none;
}
h1 tt,
h1 code {
font-size: inherit;
}
h2 tt,
h2 code {
font-size: inherit;
}
h3 tt,
h3 code {
font-size: inherit;
}
h4 tt,
h4 code {
font-size: inherit;
}
h5 tt,
h5 code {
font-size: inherit;
}
h6 tt,
h6 code {
font-size: inherit;
}
h1 {
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h2 {
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
/*@media print {
.typora-export h1,
.typora-export h2 {
border-bottom: none;
padding-bottom: initial;
}
.typora-export h1::after,
.typora-export h2::after {
content: "";
display: block;
height: 100px;
margin-top: -96px;
border-top: 1px solid #eee;
}
}*/
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h4 {
font-size: 1.25em;
}
h5 {
font-size: 1em;
}
h6 {
font-size: 1em;
color: #777;
}
p,
blockquote,
ul,
ol,
dl,
table{
margin: 0.8em 0;
}
li>ol,
li>ul {
margin: 0 0;
}
hr {
height: 2px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
overflow: hidden;
box-sizing: content-box;
}
li p.first {
display: inline-block;
}
ul,
ol {
padding-left: 30px;
}
ul:first-child,
ol:first-child {
margin-top: 0;
}
ul:last-child,
ol:last-child {
margin-bottom: 0;
}
blockquote {
border-left: 4px solid #dfe2e5;
padding: 0 15px;
color: #777777;
}
blockquote blockquote {
padding-right: 0;
}
table {
padding: 0;
word-break: initial;
}
table tr {
border-top: 1px solid #dfe2e5;
margin: 0;
padding: 0;
}
table tr:nth-child(2n),
thead {
background-color: #f8f8f8;
}
table th {
font-weight: bold;
border: 1px solid #dfe2e5;
border-bottom: 0;
margin: 0;
padding: 6px 13px;
}
table td {
border: 1px solid #dfe2e5;
margin: 0;
padding: 6px 13px;
}
table th:first-child,
table td:first-child {
margin-top: 0;
}
table th:last-child,
table td:last-child {
margin-bottom: 0;
}
.CodeMirror-lines {
padding-left: 4px;
}
.code-tooltip {
box-shadow: 0 1px 1px 0 rgba(0,28,36,.3);
border-top: 1px solid #eef2f2;
}
.md-fences,
code,
tt {
border: 1px solid #e7eaed;
background-color: #f8f8f8;
border-radius: 3px;
padding: 0;
padding: 2px 4px 0px 4px;
font-size: 0.9em;
}
code {
background-color: #f3f4f4;
padding: 0 2px 0 2px;
}
.md-fences {
margin-bottom: 15px;
margin-top: 15px;
padding-top: 8px;
padding-bottom: 6px;
}
.md-task-list-item > input {
margin-left: -1.3em;
}
@media print {
html {
font-size: 13px;
}
table,
pre {
page-break-inside: avoid;
}
pre {
word-wrap: break-word;
}
}
.md-fences {
background-color: #f8f8f8;
}
#write pre.md-meta-block {
padding: 1rem;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border: 0;
border-radius: 3px;
color: #777777;
margin-top: 0 !important;
}
.mathjax-block>.code-tooltip {
bottom: .375rem;
}
.md-mathjax-midline {
background: #fafafa;
}
#write>h3.md-focus:before{
left: -1.5625rem;
top: .375rem;
}
#write>h4.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h5.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
#write>h6.md-focus:before{
left: -1.5625rem;
top: .285714286rem;
}
.md-image>.md-meta {
/*border: 1px solid #ddd;*/
border-radius: 3px;
padding: 2px 0px 0px 4px;
font-size: 0.9em;
color: inherit;
}
.md-tag {
color: #a7a7a7;
opacity: 1;
}
.md-toc {
margin-top:20px;
padding-bottom:20px;
}
.sidebar-tabs {
border-bottom: none;
}
#typora-quick-open {
border: 1px solid #ddd;
background-color: #f8f8f8;
}
#typora-quick-open-item {
background-color: #FAFAFA;
border-color: #FEFEFE #e5e5e5 #e5e5e5 #eee;
border-style: solid;
border-width: 1px;
}
/** focus mode */
.on-focus-mode blockquote {
border-left-color: rgba(85, 85, 85, 0.12);
}
header, .context-menu, .megamenu-content, footer{
font-family: "Segoe UI", "Arial", sans-serif;
}
.file-node-content:hover .file-node-icon,
.file-node-content:hover .file-node-open-state{
visibility: visible;
}
.mac-seamless-mode #typora-sidebar {
background-color: #fafafa;
background-color: var(--side-bar-bg-color);
}
.md-lang {
color: #b4654d;
}
.html-for-mac .context-menu {
--item-hover-bg-color: #E6F0FE;
}
#md-notification .btn {
border: 0;
}
.dropdown-menu .divider {
border-color: #e5e5e5;
}
.ty-preferences .window-content {
background-color: #fafafa;
}
.ty-preferences .nav-group-item.active {
color: white;
background: #999;
}
</style>
</head>
<body class='typora-export os-windows'>
<div id='write' class=''><div class='md-toc' mdtype='toc'><p class="md-toc-content" role="list"><span role="listitem" class="md-toc-item md-toc-h1" data-ref="n2"><a class="md-toc-inner" href="#9-神经网络-学习neural-networks-learning">9 神经网络: 学习(Neural Networks: Learning)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n3"><a class="md-toc-inner" href="#91-代价函数cost-function">9.1 代价函数(Cost Function)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n36"><a class="md-toc-inner" href="#92-反向传播算法backpropagation-algorithm">9.2 反向传播算法(Backpropagation Algorithm)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n88"><a class="md-toc-inner" href="#93-直观理解反向传播backpropagation-intuition">9.3 直观理解反向传播(Backpropagation Intuition)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n137"><a class="md-toc-inner" href="#94-实现注意点-参数展开implementation-note-unrolling-parameters">9.4 实现注意点: 参数展开(Implementation Note: Unrolling Parameters)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n144"><a class="md-toc-inner" href="#95-梯度检验gradient-checking">9.5 梯度检验(Gradient Checking)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n156"><a class="md-toc-inner" href="#96-随机初始化random-initialization">9.6 随机初始化(Random Initialization)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n166"><a class="md-toc-inner" href="#97-综合起来putting-it-together">9.7 综合起来(Putting It Together)</a></span><span role="listitem" class="md-toc-item md-toc-h2" data-ref="n198"><a class="md-toc-inner" href="#98-自主驾驶autonomous-driving">9.8 自主驾驶(Autonomous Driving)</a></span></p></div><h1><a name="9-神经网络-学习neural-networks-learning" class="md-header-anchor"></a><span>9 神经网络: 学习(Neural Networks: Learning)</span></h1><h2><a name="91-代价函数cost-function" class="md-header-anchor"></a><span>9.1 代价函数(Cost Function)</span></h2><p><span>神经网络的分类问题有两种:</span></p><ul><li><p><span>二元分类问题(0/1分类)</span></p><p><span>只有一个输出单元 (</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.323ex" height="1.877ex" viewBox="0 -755.9 2722.6 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E364-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E364-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E364-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E364-MJMATHI-4B" x="0" y="0"></use><use xlink:href="#E364-MJMAIN-3D" x="1166" y="0"></use><use xlink:href="#E364-MJMAIN-31" x="2222" y="0"></use></g></svg></span><script type="math/tex">K=1</script><span>)</span></p></li><li><p><span>多元(</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.065ex" height="1.877ex" viewBox="0 -755.9 889 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E337-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E337-MJMATHI-4B" x="0" y="0"></use></g></svg></span><script type="math/tex">K</script><span>)分类问题</span></p><p><span>输出单元不止一个(</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.323ex" height="1.994ex" viewBox="0 -755.9 2722.6 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E365-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E365-MJMAIN-3E" d="M84 520Q84 528 88 533T96 539L99 540Q106 540 253 471T544 334L687 265Q694 260 694 250T687 235Q685 233 395 96L107 -40H101Q83 -38 83 -20Q83 -19 83 -17Q82 -10 98 -1Q117 9 248 71Q326 108 378 132L626 250L378 368Q90 504 86 509Q84 513 84 520Z"></path><path stroke-width="0" id="E365-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E365-MJMATHI-4B" x="0" y="0"></use><use xlink:href="#E365-MJMAIN-3E" x="1166" y="0"></use><use xlink:href="#E365-MJMAIN-31" x="2222" y="0"></use></g></svg></span><script type="math/tex">K\gt1</script><span>)</span></p></li></ul><p><span>神经网络的代价函数公式:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="41.184ex" height="2.928ex" viewBox="0 -956.9 17731.8 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E366-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E366-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E366-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E366-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E366-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E366-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E366-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E366-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E366-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E366-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E366-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E366-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E366-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E366-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E366-MJMATHI-78" x="1615" y="0"></use><use xlink:href="#E366-MJMAIN-29" x="2187" y="0"></use><use xlink:href="#E366-MJMAIN-3D" x="2853" y="0"></use><g transform="translate(3909,0)"><use xlink:href="#E366-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E366-MJMAIN-3D" x="5848" y="0"></use><use xlink:href="#E366-MJMATHI-67" x="6903" y="0"></use><use xlink:href="#E366-MJMAIN-28" x="7383" y="0"></use><g transform="translate(7772,0)"><use xlink:href="#E366-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-29" x="2348" y="0"></use></g></g><g transform="translate(10586,0)"><use xlink:href="#E366-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-29" x="2348" y="0"></use></g></g><use xlink:href="#E366-MJMAIN-29" x="13150" y="0"></use><use xlink:href="#E366-MJMAIN-3D" x="13817" y="0"></use><use xlink:href="#E366-MJMATHI-67" x="14873" y="0"></use><use xlink:href="#E366-MJMAIN-28" x="15353" y="0"></use><g transform="translate(15742,0)"><use xlink:href="#E366-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E366-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E366-MJMAIN-29" x="17342" y="0"></use></g></svg></span><script type="math/tex">h_\Theta(x) = a^{(L)} = g(\Theta^{(L-1)}a^{(L-1)}) = g(z^{(L)})</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="99.785ex" height="7.48ex" viewBox="0 -1861.6 42962.8 3220.6" role="img" focusable="false" style="vertical-align: -2.978ex; margin-bottom: -0.178ex;"><defs><path stroke-width="0" id="E367-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E367-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E367-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E367-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E367-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E367-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E367-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E367-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E367-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E367-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E367-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path stroke-width="0" id="E367-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E367-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E367-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E367-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E367-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E367-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E367-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E367-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E367-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E367-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E367-MJSZ2-5B" d="M224 -649V1150H455V1099H275V-598H455V-649H224Z"></path><path stroke-width="0" id="E367-MJSZ2-5D" d="M16 1099V1150H247V-649H16V-598H196V1099H16Z"></path><path stroke-width="0" id="E367-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E367-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E367-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E367-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E367-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E367-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E367-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,49)"><use xlink:href="#E367-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E367-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E367-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E367-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E367-MJMAIN-3D" x="2466" y="0"></use><use xlink:href="#E367-MJMAIN-2212" x="3522" y="0"></use><g transform="translate(4300,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E367-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E367-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(5705,0)"><use xlink:href="#E367-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6D" x="582" y="1626"></use></g><g transform="translate(7315,0)"><use xlink:href="#E367-MJSZ2-2211" x="0" y="0"></use><g transform="translate(85,-1108)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6B" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-3D" x="521" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-31" x="1299" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-4B" x="576" y="1626"></use></g><g transform="translate(8926,0)"><use xlink:href="#E367-MJSZ2-5B"></use><g transform="translate(472,0)"><use xlink:href="#E367-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,521)"><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6B" x="692" y="-462"></use></g><g transform="translate(2031,0)"><use xlink:href="#E367-MJMAIN-6C"></use><use xlink:href="#E367-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E367-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E367-MJMAIN-28" x="3309" y="0"></use><use xlink:href="#E367-MJMAIN-28" x="3698" y="0"></use><g transform="translate(4087,0)"><use xlink:href="#E367-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E367-MJMAIN-28" x="5314" y="0"></use><g transform="translate(5703,0)"><use xlink:href="#E367-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E367-MJMAIN-29" x="7169" y="0"></use><g transform="translate(7558,0)"><use xlink:href="#E367-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6B" x="550" y="-213"></use></g><use xlink:href="#E367-MJMAIN-29" x="8415" y="0"></use><use xlink:href="#E367-MJMAIN-2B" x="9026" y="0"></use><use xlink:href="#E367-MJMAIN-28" x="10026" y="0"></use><use xlink:href="#E367-MJMAIN-31" x="10415" y="0"></use><use xlink:href="#E367-MJMAIN-2212" x="11138" y="0"></use><g transform="translate(12138,0)"><use xlink:href="#E367-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,521)"><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6B" x="692" y="-462"></use></g><use xlink:href="#E367-MJMAIN-29" x="13531" y="0"></use><g transform="translate(14087,0)"><use xlink:href="#E367-MJMAIN-6C"></use><use xlink:href="#E367-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E367-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E367-MJMAIN-28" x="15365" y="0"></use><use xlink:href="#E367-MJMAIN-31" x="15754" y="0"></use><use xlink:href="#E367-MJMAIN-2212" x="16476" y="0"></use><use xlink:href="#E367-MJMAIN-28" x="17476" y="0"></use><g transform="translate(17865,0)"><use xlink:href="#E367-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E367-MJMAIN-28" x="19091" y="0"></use><g transform="translate(19480,0)"><use xlink:href="#E367-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E367-MJMAIN-29" x="20946" y="0"></use><g transform="translate(21335,0)"><use xlink:href="#E367-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6B" x="550" y="-213"></use></g><use xlink:href="#E367-MJMAIN-29" x="22193" y="0"></use><use xlink:href="#E367-MJSZ2-5D" x="22582" y="-1"></use></g><use xlink:href="#E367-MJMAIN-2B" x="32203" y="0"></use><g transform="translate(32981,0)"><g transform="translate(342,0)"><rect stroke="none" width="1498" height="60" x="0" y="220"></rect><use xlink:href="#E367-MJMATHI-3BB" x="457" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E367-MJMAIN-32" x="0" y="0"></use><use xlink:href="#E367-MJMATHI-6D" x="500" y="0"></use></g></g></g><g transform="translate(35108,0)"><use xlink:href="#E367-MJSZ2-2211" x="0" y="0"></use><g transform="translate(164,-1109)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-3D" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-31" x="1076" y="0"></use></g><g transform="translate(29,1150)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-2212" x="681" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-31" x="1459" y="0"></use></g></g><g transform="translate(36718,0)"><use xlink:href="#E367-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-31" x="1123" y="0"></use></g><g transform="translate(446,1173)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-73" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E367-MJMATHI-6C" x="663" y="-213"></use></g></g><g transform="translate(38329,0)"><use xlink:href="#E367-MJSZ2-2211" x="0" y="0"></use><g transform="translate(124,-1088)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-31" x="1189" y="0"></use></g><g transform="translate(126,1208)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-73" x="0" y="0"></use><g transform="translate(331,-107)"><use transform="scale(0.5)" xlink:href="#E367-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E367-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.5)" xlink:href="#E367-MJMAIN-31" x="1076" y="0"></use></g></g></g><use xlink:href="#E367-MJMAIN-28" x="39773" y="0"></use><g transform="translate(40162,0)"><use xlink:href="#E367-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,521)"><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(778,-303)"><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-2C" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMATHI-69" x="690" y="0"></use></g></g><g transform="translate(41801,0)"><use xlink:href="#E367-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E367-MJMAIN-32" x="550" y="583"></use></g></g></g></g></g></svg></span><script type="math/tex">\begin{gather*} J(\Theta) = - \frac{1}{m} \sum_{i=1}^m \sum_{k=1}^K \left[y^{(i)}_k \log ((h_\Theta (x^{(i)}))_k) + (1 - y^{(i)}_k)\log (1 - (h_\Theta(x^{(i)}))_k)\right] + \frac{\lambda}{2m}\sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} ( \Theta_{j,i}^{(l)})^2\end{gather*}</script></p><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.582ex" height="1.994ex" viewBox="0 -755.9 681 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E272-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E272-MJMATHI-4C" x="0" y="0"></use></g></svg></span><script type="math/tex">L</script><span>: 神经网络的总层数</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.811ex" height="1.76ex" viewBox="0 -504.6 779.7 757.9" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E368-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E368-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E368-MJMATHI-73" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E368-MJMATHI-6C" x="663" y="-213"></use></g></svg></span><script type="math/tex">s_l</script><span>: 第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E417-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E417-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> 层激活单元的数量(不包含偏置单元)</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="7.071ex" height="2.577ex" viewBox="0 -806.1 3044.5 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E370-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E370-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E370-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E370-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E370-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E370-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E370-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E370-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E370-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E370-MJMATHI-78" x="1615" y="0"></use><g transform="translate(2187,0)"><use xlink:href="#E370-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E370-MJMATHI-6B" x="550" y="-213"></use></g></g></svg></span><script type="math/tex">h_\Theta(x)_k</script><span>: 分为第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span> 个分类(</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.981ex" height="2.344ex" viewBox="0 -906.7 1283.6 1009.2" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E371-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path stroke-width="0" id="E371-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E371-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E371-MJMATHI-6B" x="0" y="0"></use><g transform="translate(521,362)"><use transform="scale(0.707)" xlink:href="#E371-MJMATHI-74" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E371-MJMATHI-68" x="361" y="0"></use></g></g></svg></span><script type="math/tex">k^{th}</script><span>)的概率 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.827ex" height="2.577ex" viewBox="0 -806.1 5953.2 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E372-MJMATHI-50" d="M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z"></path><path stroke-width="0" id="E372-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E372-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E372-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E372-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path><path stroke-width="0" id="E372-MJMAIN-7C" d="M139 -249H137Q125 -249 119 -235V251L120 737Q130 750 139 750Q152 750 159 735V-235Q151 -249 141 -249H139Z"></path><path stroke-width="0" id="E372-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E372-MJMAIN-3B" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 85 94 103T137 121Q202 121 202 8Q202 -44 183 -94T144 -169T118 -194Q115 -194 106 -186T95 -174Q94 -171 107 -155T137 -107T160 -38Q161 -32 162 -22T165 -4T165 4Q165 5 161 4T142 0Q110 0 94 18T78 60Z"></path><path stroke-width="0" id="E372-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E372-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E372-MJMATHI-50" x="0" y="0"></use><use xlink:href="#E372-MJMAIN-28" x="751" y="0"></use><use xlink:href="#E372-MJMATHI-79" x="1140" y="0"></use><use xlink:href="#E372-MJMAIN-3D" x="1914" y="0"></use><use xlink:href="#E372-MJMATHI-6B" x="2970" y="0"></use><use xlink:href="#E372-MJMAIN-7C" x="3491" y="0"></use><use xlink:href="#E372-MJMATHI-78" x="3769" y="0"></use><use xlink:href="#E372-MJMAIN-3B" x="4341" y="0"></use><use xlink:href="#E372-MJMAIN-398" x="4786" y="0"></use><use xlink:href="#E372-MJMAIN-29" x="5564" y="0"></use></g></svg></span><script type="math/tex">P(y=k | x ; \Theta) </script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.065ex" height="1.877ex" viewBox="0 -755.9 889 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E337-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E337-MJMATHI-4B" x="0" y="0"></use></g></svg></span><script type="math/tex">K</script><span>: 输出层的输出单元数量,即类数 - 1</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.236ex" height="3.511ex" viewBox="0 -1107.7 1393.2 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E373-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E373-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E373-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E373-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E373-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E373-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,521)"><use transform="scale(0.707)" xlink:href="#E373-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E373-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E373-MJMAIN-29" x="733" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E373-MJMATHI-6B" x="692" y="-462"></use></g></svg></span><script type="math/tex">y_k^{(i)}</script><span>: 第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.801ex" height="1.994ex" viewBox="0 -755.9 345 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E27-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E27-MJMATHI-69" x="0" y="0"></use></g></svg></span><script type="math/tex">i</script><span> 个训练样本的第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span> 个分量值</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.154ex" height="1.877ex" viewBox="0 -504.6 497 808.1" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E32-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E32-MJMATHI-79" x="0" y="0"></use></g></svg></span><script type="math/tex">y</script><span>: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.065ex" height="1.877ex" viewBox="0 -755.9 889 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E337-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E337-MJMATHI-4B" x="0" y="0"></use></g></svg></span><script type="math/tex">K</script><span> 维向量</span></p><p>&nbsp;</p><p><span>注:此处符号表达和第四周的内容有异有同,暂时先按照视频来,有必要的话可以做下统一.</span></p></blockquote><p><span>公式可长可长了是吧,但是不是有些熟悉?对照下逻辑回归中的代价函数:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="78.603ex" height="3.395ex" viewBox="0 -956.9 33843 1461.5" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E374-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E374-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E374-MJMATHI-3B8" d="M35 200Q35 302 74 415T180 610T319 704Q320 704 327 704T339 705Q393 701 423 656Q462 596 462 495Q462 380 417 261T302 66T168 -10H161Q125 -10 99 10T60 63T41 130T35 200ZM383 566Q383 668 330 668Q294 668 260 623T204 521T170 421T157 371Q206 370 254 370L351 371Q352 372 359 404T375 484T383 566ZM113 132Q113 26 166 26Q181 26 198 36T239 74T287 161T335 307L340 324H145Q145 321 136 286T120 208T113 132Z"></path><path stroke-width="0" id="E374-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E374-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E374-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E374-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E374-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E374-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E374-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E374-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E374-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E374-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E374-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E374-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E374-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E374-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E374-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E374-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E374-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E374-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E374-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E374-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E374-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E374-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E374-MJMATHI-3B8" x="1022" y="0"></use><use xlink:href="#E374-MJMAIN-29" x="1491" y="0"></use><use xlink:href="#E374-MJMAIN-3D" x="2157" y="0"></use><use xlink:href="#E374-MJMAIN-2212" x="3213" y="0"></use><g transform="translate(3991,0)"><g transform="translate(120,0)"><rect stroke="none" width="740" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-31" x="273" y="571"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-6D" x="84" y="-488"></use></g></g><g transform="translate(5139,0)"><use xlink:href="#E374-MJSZ1-2211" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-6D" x="1493" y="674"></use><g transform="translate(1056,-286)"><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-31" x="1123" y="0"></use></g></g><use xlink:href="#E374-MJMAIN-5B" x="7442" y="0"></use><g transform="translate(7720,0)"><use xlink:href="#E374-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(9530,0)"><use xlink:href="#E374-MJMAIN-6C"></use><use xlink:href="#E374-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E374-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E374-MJMAIN-28" x="10808" y="0"></use><g transform="translate(11197,0)"><use xlink:href="#E374-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E374-MJMAIN-28" x="12205" y="0"></use><g transform="translate(12594,0)"><use xlink:href="#E374-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E374-MJMAIN-29" x="14060" y="0"></use><use xlink:href="#E374-MJMAIN-29" x="14449" y="0"></use><use xlink:href="#E374-MJMAIN-2B" x="15060" y="0"></use><use xlink:href="#E374-MJMAIN-28" x="16060" y="0"></use><use xlink:href="#E374-MJMAIN-31" x="16449" y="0"></use><use xlink:href="#E374-MJMAIN-2212" x="17171" y="0"></use><g transform="translate(18172,0)"><use xlink:href="#E374-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E374-MJMAIN-29" x="19565" y="0"></use><g transform="translate(20371,0)"><use xlink:href="#E374-MJMAIN-6C"></use><use xlink:href="#E374-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E374-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E374-MJMAIN-28" x="21649" y="0"></use><use xlink:href="#E374-MJMAIN-31" x="22038" y="0"></use><use xlink:href="#E374-MJMAIN-2212" x="22760" y="0"></use><g transform="translate(23760,0)"><use xlink:href="#E374-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-3B8" x="814" y="-218"></use></g><use xlink:href="#E374-MJMAIN-28" x="24768" y="0"></use><g transform="translate(25157,0)"><use xlink:href="#E374-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E374-MJMAIN-29" x="26623" y="0"></use><use xlink:href="#E374-MJMAIN-29" x="27012" y="0"></use><use xlink:href="#E374-MJMAIN-5D" x="27401" y="0"></use><use xlink:href="#E374-MJMAIN-2B" x="27901" y="0"></use><g transform="translate(28679,0)"><g transform="translate(342,0)"><rect stroke="none" width="1094" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-3BB" x="482" y="583"></use><g transform="translate(59,-376)"><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-32" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-6D" x="500" y="0"></use></g></g></g><g transform="translate(30402,0)"><use xlink:href="#E374-MJSZ1-2211" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-6E" x="1493" y="674"></use><g transform="translate(1056,-286)"><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-31" x="1189" y="0"></use></g></g><g transform="translate(32920,0)"><use xlink:href="#E374-MJMATHI-3B8" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E374-MJMAIN-32" x="663" y="487"></use><use transform="scale(0.707)" xlink:href="#E374-MJMATHI-6A" x="663" y="-429"></use></g></g></svg></span><script type="math/tex">J(\theta) = - \frac{1}{m} \sum_{i=1}^m [ y^{(i)}\ \log (h_\theta (x^{(i)})) + (1 - y^{(i)})\ \log (1 - h_\theta(x^{(i)}))] + \frac{\lambda}{2m}\sum_{j=1}^n \theta_j^2</script></p><p><span>在神经网络的代价函数中,</span></p><ul><li><span>左边的变化实际上是为了求解 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.065ex" height="1.877ex" viewBox="0 -755.9 889 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E337-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E337-MJMATHI-4B" x="0" y="0"></use></g></svg></span><script type="math/tex">K</script><span> 分类问题,即公式会对每个样本特征都运行 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.065ex" height="1.877ex" viewBox="0 -755.9 889 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E337-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E337-MJMATHI-4B" x="0" y="0"></use></g></svg></span><script type="math/tex">K</script><span> 次,并依次给出分为第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.21ex" height="1.994ex" viewBox="0 -755.9 521 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E249-MJMATHI-6B" d="M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E249-MJMATHI-6B" x="0" y="0"></use></g></svg></span><script type="math/tex">k</script><span> 类的概率,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="20.588ex" height="2.928ex" viewBox="0 -956.9 8864.1 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E375-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E375-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E375-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E375-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E375-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E375-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E375-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E375-MJMATHI-4B" d="M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z"></path><path stroke-width="0" id="E375-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E375-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E375-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E375-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E375-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E375-MJMATHI-78" x="1615" y="0"></use><use xlink:href="#E375-MJMAIN-29" x="2187" y="0"></use><use xlink:href="#E375-MJMAIN-2208" x="2853" y="0"></use><g transform="translate(3798,0)"><use xlink:href="#E375-MJAMS-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E375-MJMATHI-4B" x="1021" y="579"></use></g><use xlink:href="#E375-MJMAIN-2C" x="5249" y="0"></use><use xlink:href="#E375-MJMATHI-79" x="5693" y="0"></use><use xlink:href="#E375-MJMAIN-2208" x="6468" y="0"></use><g transform="translate(7413,0)"><use xlink:href="#E375-MJAMS-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E375-MJMATHI-4B" x="1021" y="579"></use></g></g></svg></span><script type="math/tex">h_\Theta(x)\in \mathbb{R}^{K}, y \in \mathbb{R}^{K}</script><span>。</span></li><li><span>右边的正则化项比较容易理解,每一层有多维矩阵 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="17.255ex" height="2.577ex" viewBox="0 -1007.2 7429 1109.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E376-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E376-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E376-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E376-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E376-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E376-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E376-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E376-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E376-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E376-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E376-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E376-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E376-MJMAIN-2208" x="1916" y="0"></use><g transform="translate(2861,0)"><use xlink:href="#E376-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-28" x="0" y="0"></use><g transform="translate(275,0)"><use transform="scale(0.707)" xlink:href="#E376-MJMATHI-73" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E376-MJMATHI-6C" x="663" y="-213"></use></g><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-2B" x="1168" y="0"></use><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-31" x="1946" y="0"></use><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-29" x="2446" y="0"></use><use transform="scale(0.707)" xlink:href="#E376-MJMAIN-D7" x="2835" y="0"></use><g transform="translate(2555,0)"><use transform="scale(0.707)" xlink:href="#E376-MJMATHI-73" x="0" y="0"></use><g transform="translate(331,-107)"><use transform="scale(0.5)" xlink:href="#E376-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E376-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.5)" xlink:href="#E376-MJMAIN-31" x="1076" y="0"></use></g></g></g></g></g></svg></span><script type="math/tex">\Theta^{(l)}\in \mathbb{R}^{(s_l + 1)\times s_{l+1}}</script><span>,从左到右看这个三次求和式 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.432ex" height="6.546ex" viewBox="0 -1610.3 4061.2 2818.5" role="img" focusable="false" style="vertical-align: -2.806ex;"><defs><path stroke-width="0" id="E377-MJSZ1-2211" d="M61 748Q64 750 489 750H913L954 640Q965 609 976 579T993 533T999 516H979L959 517Q936 579 886 621T777 682Q724 700 655 705T436 710H319Q183 710 183 709Q186 706 348 484T511 259Q517 250 513 244L490 216Q466 188 420 134T330 27L149 -187Q149 -188 362 -188Q388 -188 436 -188T506 -189Q679 -189 778 -162T936 -43Q946 -27 959 6H999L913 -249L489 -250Q65 -250 62 -248Q56 -246 56 -239Q56 -234 118 -161Q186 -81 245 -11L428 206Q428 207 242 462L57 717L56 728Q56 744 61 748Z"></path><path stroke-width="0" id="E377-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E377-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E377-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E377-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E377-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E377-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E377-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E377-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E377-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E377-MJSZ1-2211" x="164" y="0"></use><g transform="translate(135,-909)"><use transform="scale(0.707)" xlink:href="#E377-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-3D" x="298" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-31" x="1076" y="0"></use></g><g transform="translate(0,950)"><use transform="scale(0.707)" xlink:href="#E377-MJMATHI-4C" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-2212" x="681" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-31" x="1459" y="0"></use></g><g transform="translate(1551,0)"><use xlink:href="#E377-MJSZ1-2211" x="45" y="0"></use><g transform="translate(0,-888)"><use transform="scale(0.707)" xlink:href="#E377-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-31" x="1123" y="0"></use></g><g transform="translate(298,973)"><use transform="scale(0.707)" xlink:href="#E377-MJMATHI-73" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E377-MJMATHI-6C" x="663" y="-213"></use></g></g><g transform="translate(2866,0)"><use xlink:href="#E377-MJSZ1-2211" x="69" y="0"></use><g transform="translate(0,-888)"><use transform="scale(0.707)" xlink:href="#E377-MJMATHI-6A" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-3D" x="412" y="0"></use><use transform="scale(0.707)" xlink:href="#E377-MJMAIN-31" x="1189" y="0"></use></g><g transform="translate(2,1008)"><use transform="scale(0.707)" xlink:href="#E377-MJMATHI-73" x="0" y="0"></use><g transform="translate(331,-107)"><use transform="scale(0.5)" xlink:href="#E377-MJMATHI-6C" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E377-MJMAIN-2B" x="298" y="0"></use><use transform="scale(0.5)" xlink:href="#E377-MJMAIN-31" x="1076" y="0"></use></g></g></g></g></svg></span><script type="math/tex">\sum\limits_{l=1}^{L-1}\sum\limits_{i=1}^{s_l}\sum\limits_{j=1}^{s_{l+1}}</script><span> ,就是对每一层间的多维矩权重 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.806ex" height="2.461ex" viewBox="0 -956.9 1638.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E468-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E468-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E468-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E468-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E468-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E468-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E468-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E468-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(l)}</script><span> ,依次平方后求取其除了偏置权重部分的和值,并循环累加即得结果。</span></li></ul><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.351ex" height="2.11ex" viewBox="0 -806.1 1442.8 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E379-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E379-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E379-MJAMS-52" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E379-MJMATHI-6D" x="1021" y="579"></use></g></svg></span><script type="math/tex">\mathbb{R}^{m}</script><span>: 即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.039ex" height="1.41ex" viewBox="0 -504.6 878 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E23-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E23-MJMATHI-6D" x="0" y="0"></use></g></svg></span><script type="math/tex">m</script><span> 维向量</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.614ex" height="2.227ex" viewBox="0 -856.4 2417.2 958.9" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E380-MJAMS-52" d="M17 665Q17 672 28 683H221Q415 681 439 677Q461 673 481 667T516 654T544 639T566 623T584 607T597 592T607 578T614 565T618 554L621 548Q626 530 626 497Q626 447 613 419Q578 348 473 326L455 321Q462 310 473 292T517 226T578 141T637 72T686 35Q705 30 705 16Q705 7 693 -1H510Q503 6 404 159L306 310H268V183Q270 67 271 59Q274 42 291 38Q295 37 319 35Q344 35 353 28Q362 17 353 3L346 -1H28Q16 5 16 16Q16 35 55 35Q96 38 101 52Q106 60 106 341T101 632Q95 645 55 648Q17 648 17 665ZM241 35Q238 42 237 45T235 78T233 163T233 337V621L237 635L244 648H133Q136 641 137 638T139 603T141 517T141 341Q141 131 140 89T134 37Q133 36 133 35H241ZM457 496Q457 540 449 570T425 615T400 634T377 643Q374 643 339 648Q300 648 281 635Q271 628 270 610T268 481V346H284Q327 346 375 352Q421 364 439 392T457 496ZM492 537T492 496T488 427T478 389T469 371T464 361Q464 360 465 360Q469 360 497 370Q593 400 593 495Q593 592 477 630L457 637L461 626Q474 611 488 561Q492 537 492 496ZM464 243Q411 317 410 317Q404 317 401 315Q384 315 370 312H346L526 35H619L606 50Q553 109 464 243Z"></path><path stroke-width="0" id="E380-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E380-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E380-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E380-MJAMS-52" x="0" y="0"></use><g transform="translate(722,409)"><use transform="scale(0.707)" xlink:href="#E380-MJMATHI-6D" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E380-MJMAIN-D7" x="878" y="0"></use><use transform="scale(0.707)" xlink:href="#E380-MJMATHI-6E" x="1655" y="0"></use></g></g></svg></span><script type="math/tex">\mathbb{R}^{m\times n}</script><span>: 即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.272ex" height="1.527ex" viewBox="0 -554.9 2700.4 657.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E381-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E381-MJMAIN-D7" d="M630 29Q630 9 609 9Q604 9 587 25T493 118L389 222L284 117Q178 13 175 11Q171 9 168 9Q160 9 154 15T147 29Q147 36 161 51T255 146L359 250L255 354Q174 435 161 449T147 471Q147 480 153 485T168 490Q173 490 175 489Q178 487 284 383L389 278L493 382Q570 459 587 475T609 491Q630 491 630 471Q630 464 620 453T522 355L418 250L522 145Q606 61 618 48T630 29Z"></path><path stroke-width="0" id="E381-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E381-MJMATHI-6D" x="0" y="0"></use><use xlink:href="#E381-MJMAIN-D7" x="1100" y="0"></use><use xlink:href="#E381-MJMATHI-6E" x="2100" y="0"></use></g></svg></span><script type="math/tex">m \times n</script><span> 维矩阵</span></p></blockquote><p><span>再次可见,神经网络背后的思想是和逻辑回归一样的,但由于计算复杂,实际上神经网络的代价函数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 是一个非凸(non-convex)函数。</span></p><h2><a name="92-反向传播算法backpropagation-algorithm" class="md-header-anchor"></a><span>9.2 反向传播算法(Backpropagation Algorithm)</span></h2><p><span>类似于回归模型中的梯度下降算法,为了求解神经网络最优化问题,我们也要计算 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.129ex" height="3.511ex" viewBox="0 -1007.2 3500.1 1511.8" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E386-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E386-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E386-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E386-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E386-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1071" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E386-MJMAIN-2202" x="473" y="593"></use><g transform="translate(60,-410)"><use transform="scale(0.707)" xlink:href="#E386-MJMAIN-2202" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E386-MJMAIN-398" x="567" y="0"></use></g></g><use xlink:href="#E386-MJMATHI-4A" x="1311" y="0"></use><use xlink:href="#E386-MJMAIN-28" x="1944" y="0"></use><use xlink:href="#E386-MJMAIN-398" x="2333" y="0"></use><use xlink:href="#E386-MJMAIN-29" x="3111" y="0"></use></g></svg></span><script type="math/tex">\frac{\partial}{\partial\Theta}J(\Theta)</script><span>,以此 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.244ex" height="3.861ex" viewBox="0 -806.1 6133 1662.6" role="img" focusable="false" style="vertical-align: -1.989ex;"><defs><path stroke-width="0" id="E384-MJMAIN-6D" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q351 442 364 440T387 434T406 426T421 417T432 406T441 395T448 384T452 374T455 366L457 361L460 365Q463 369 466 373T475 384T488 397T503 410T523 422T546 432T572 439T603 442Q729 442 740 329Q741 322 741 190V104Q741 66 743 59T754 49Q775 46 803 46H819V0H811L788 1Q764 2 737 2T699 3Q596 3 587 0H579V46H595Q656 46 656 62Q657 64 657 200Q656 335 655 343Q649 371 635 385T611 402T585 404Q540 404 506 370Q479 343 472 315T464 232V168V108Q464 78 465 68T468 55T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E384-MJMAIN-69" d="M69 609Q69 637 87 653T131 669Q154 667 171 652T188 609Q188 579 171 564T129 549Q104 549 87 564T69 609ZM247 0Q232 3 143 3Q132 3 106 3T56 1L34 0H26V46H42Q70 46 91 49Q100 53 102 60T104 102V205V293Q104 345 102 359T88 378Q74 385 41 385H30V408Q30 431 32 431L42 432Q52 433 70 434T106 436Q123 437 142 438T171 441T182 442H185V62Q190 52 197 50T232 46H255V0H247Z"></path><path stroke-width="0" id="E384-MJMAIN-6E" d="M41 46H55Q94 46 102 60V68Q102 77 102 91T102 122T103 161T103 203Q103 234 103 269T102 328V351Q99 370 88 376T43 385H25V408Q25 431 27 431L37 432Q47 433 65 434T102 436Q119 437 138 438T167 441T178 442H181V402Q181 364 182 364T187 369T199 384T218 402T247 421T285 437Q305 442 336 442Q450 438 463 329Q464 322 464 190V104Q464 66 466 59T477 49Q498 46 526 46H542V0H534L510 1Q487 2 460 2T422 3Q319 3 310 0H302V46H318Q379 46 379 62Q380 64 380 200Q379 335 378 343Q372 371 358 385T334 402T308 404Q263 404 229 370Q202 343 195 315T187 232V168V108Q187 78 188 68T191 55T200 49Q221 46 249 46H265V0H257L234 1Q210 2 183 2T145 3Q42 3 33 0H25V46H41Z"></path><path stroke-width="0" id="E384-MJMAIN-7A" d="M42 263Q44 270 48 345T53 423V431H393Q399 425 399 415Q399 403 398 402L381 378Q364 355 331 309T265 220L134 41L182 40H206Q254 40 283 46T331 77Q352 105 359 185L361 201Q361 202 381 202H401V196Q401 195 393 103T384 6V0H209L34 1L31 3Q28 8 28 17Q28 30 29 31T160 210T294 394H236Q169 393 152 388Q127 382 113 367Q89 344 82 264V255H42V263Z"></path><path stroke-width="0" id="E384-MJMAIN-65" d="M28 218Q28 273 48 318T98 391T163 433T229 448Q282 448 320 430T378 380T406 316T415 245Q415 238 408 231H126V216Q126 68 226 36Q246 30 270 30Q312 30 342 62Q359 79 369 104L379 128Q382 131 395 131H398Q415 131 415 121Q415 117 412 108Q393 53 349 21T250 -11Q155 -11 92 58T28 218ZM333 275Q322 403 238 411H236Q228 411 220 410T195 402T166 381T143 340T127 274V267H333V275Z"></path><path stroke-width="0" id="E384-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E384-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E384-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E384-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E384-MJMAIN-6D"></use><use xlink:href="#E384-MJMAIN-69" x="833" y="0"></use><use xlink:href="#E384-MJMAIN-6E" x="1111" y="0"></use><use xlink:href="#E384-MJMAIN-69" x="1667" y="0"></use><use xlink:href="#E384-MJMAIN-6D" x="1945" y="0"></use><use xlink:href="#E384-MJMAIN-69" x="2778" y="0"></use><use xlink:href="#E384-MJMAIN-7A" x="3056" y="0"></use><use xlink:href="#E384-MJMAIN-65" x="3500" y="0"></use><use transform="scale(0.707)" xlink:href="#E384-MJMAIN-398" x="2399" y="-957"></use><use xlink:href="#E384-MJMATHI-4A" x="3944" y="0"></use><use xlink:href="#E384-MJMAIN-28" x="4577" y="0"></use><use xlink:href="#E384-MJMAIN-398" x="4966" y="0"></use><use xlink:href="#E384-MJMAIN-29" x="5744" y="0"></use></g></svg></span><script type="math/tex">\underset{\Theta}{\text{minimize}}J(\Theta)</script><span> 。</span></p><p><span>在神经网络中,代价函数看上去虽然不复杂,但要注意到其中 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.983ex" height="2.577ex" viewBox="0 -806.1 2576.1 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E334-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E334-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E334-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E334-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E334-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E334-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E334-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E334-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E334-MJMATHI-78" x="1615" y="0"></use><use xlink:href="#E334-MJMAIN-29" x="2187" y="0"></use></g></svg></span><script type="math/tex">h_\Theta(x)</script><span> 的求取实际上是由前向传播算法求得,即需从输入层开始,根据每层间的权重矩阵 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.807ex" height="2.11ex" viewBox="0 -806.1 778 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E288-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E288-MJMAIN-398" x="0" y="0"></use></g></svg></span><script type="math/tex">\Theta</script><span> 依次计算激活单元的值 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.229ex" height="1.41ex" viewBox="0 -504.6 529 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E385-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E385-MJMATHI-61" x="0" y="0"></use></g></svg></span><script type="math/tex">a</script><span>。 在最优化代价函数时,我们必然也需要最优化每一层的权重矩阵,再次强调一下,</span><strong><span>算法最优化的是权重,而不是输入</span></strong><span>。</span></p><p><img src="images/20180123_122124.png" referrerpolicy="no-referrer"></p><p><strong><span>反向传播算法</span></strong><span>用于计算每一层权重矩阵的偏导 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.129ex" height="3.511ex" viewBox="0 -1007.2 3500.1 1511.8" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E386-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E386-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E386-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E386-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E386-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1071" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E386-MJMAIN-2202" x="473" y="593"></use><g transform="translate(60,-410)"><use transform="scale(0.707)" xlink:href="#E386-MJMAIN-2202" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E386-MJMAIN-398" x="567" y="0"></use></g></g><use xlink:href="#E386-MJMATHI-4A" x="1311" y="0"></use><use xlink:href="#E386-MJMAIN-28" x="1944" y="0"></use><use xlink:href="#E386-MJMAIN-398" x="2333" y="0"></use><use xlink:href="#E386-MJMAIN-29" x="3111" y="0"></use></g></svg></span><script type="math/tex">\frac{\partial}{\partial\Theta}J(\Theta)</script><span>,算法实际上是对代价函数求导的拆解。</span></p><ol start='' ><li><p><span>对于给定训练集 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="27.04ex" height="2.928ex" viewBox="0 -956.9 11642.3 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E387-MJMAIN-7B" d="M434 -231Q434 -244 428 -250H410Q281 -250 230 -184Q225 -177 222 -172T217 -161T213 -148T211 -133T210 -111T209 -84T209 -47T209 0Q209 21 209 53Q208 142 204 153Q203 154 203 155Q189 191 153 211T82 231Q71 231 68 234T65 250T68 266T82 269Q116 269 152 289T203 345Q208 356 208 377T209 529V579Q209 634 215 656T244 698Q270 724 324 740Q361 748 377 749Q379 749 390 749T408 750H428Q434 744 434 732Q434 719 431 716Q429 713 415 713Q362 710 332 689T296 647Q291 634 291 499V417Q291 370 288 353T271 314Q240 271 184 255L170 250L184 245Q202 239 220 230T262 196T290 137Q291 131 291 1Q291 -134 296 -147Q306 -174 339 -192T415 -213Q429 -213 431 -216Q434 -219 434 -231Z"></path><path stroke-width="0" id="E387-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E387-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E387-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E387-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E387-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E387-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E387-MJMAIN-22EF" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250ZM525 250Q525 274 542 292T585 310Q609 310 627 294T646 251Q646 226 629 208T586 190T543 207T525 250ZM972 250Q972 274 989 292T1032 310Q1056 310 1074 294T1093 251Q1093 226 1076 208T1033 190T990 207T972 250Z"></path><path stroke-width="0" id="E387-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E387-MJMAIN-7D" d="M65 731Q65 745 68 747T88 750Q171 750 216 725T279 670Q288 649 289 635T291 501Q292 362 293 357Q306 312 345 291T417 269Q428 269 431 266T434 250T431 234T417 231Q380 231 345 210T298 157Q293 143 292 121T291 -28V-79Q291 -134 285 -156T256 -198Q202 -250 89 -250Q71 -250 68 -247T65 -230Q65 -224 65 -223T66 -218T69 -214T77 -213Q91 -213 108 -210T146 -200T183 -177T207 -139Q208 -134 209 3L210 139Q223 196 280 230Q315 247 330 250Q305 257 280 270Q225 304 212 352L210 362L209 498Q208 635 207 640Q195 680 154 696T77 713Q68 713 67 716T65 731Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E387-MJMAIN-7B" x="0" y="0"></use><use xlink:href="#E387-MJMAIN-28" x="500" y="0"></use><g transform="translate(889,0)"><use xlink:href="#E387-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E387-MJMAIN-2C" x="2464" y="0"></use><g transform="translate(2909,0)"><use xlink:href="#E387-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E387-MJMAIN-29" x="4412" y="0"></use><use xlink:href="#E387-MJMAIN-22EF" x="4967" y="0"></use><use xlink:href="#E387-MJMAIN-28" x="6306" y="0"></use><g transform="translate(6695,0)"><use xlink:href="#E387-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMATHI-6D" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-29" x="1267" y="0"></use></g></g><use xlink:href="#E387-MJMAIN-2C" x="8538" y="0"></use><g transform="translate(8983,0)"><use xlink:href="#E387-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMATHI-6D" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E387-MJMAIN-29" x="1267" y="0"></use></g></g><use xlink:href="#E387-MJMAIN-29" x="10753" y="0"></use><use xlink:href="#E387-MJMAIN-7D" x="11142" y="0"></use></g></svg></span><script type="math/tex">\lbrace (x^{(1)}, y^{(1)}) \cdots (x^{(m)}, y^{(m)})\rbrace</script><span> ,初始化每层间的误差和矩阵 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.935ex" height="1.994ex" viewBox="0 -806.1 833 858.4" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E406-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E406-MJMAIN-394" x="0" y="0"></use></g></svg></span><script type="math/tex">\Delta</script><span>,即令所有的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.193ex" height="3.745ex" viewBox="0 -1107.7 3527.4 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E389-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E389-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E389-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E389-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E389-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E389-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E389-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E389-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E389-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E389-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E389-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E389-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E389-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E389-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E389-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E389-MJMATHI-6A" x="623" y="0"></use></g><use xlink:href="#E389-MJMAIN-3D" x="1971" y="0"></use><use xlink:href="#E389-MJMAIN-30" x="3027" y="0"></use></g></svg></span><script type="math/tex">\Delta^{(l)}_{i,j}=0</script><span>,使得每个 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.934ex" height="2.344ex" viewBox="0 -956.9 1693.8 1009.2" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E390-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E390-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E390-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E390-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E390-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,362)"><use transform="scale(0.707)" xlink:href="#E390-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E390-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E390-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">\Delta^{(l)}</script><span> 为一个全零矩阵。</span></p></li><li><p><span>接下来遍历所有样本实例,对于每一个样本实例,有下列步骤:</span></p><ol start='' ><li><p><span>运行前向传播算法,得到初始预测 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.938ex" height="2.928ex" viewBox="0 -956.9 5570.4 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E391-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E391-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E391-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E391-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E391-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E391-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E391-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E391-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E391-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E391-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E391-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E391-MJMAIN-29" x="1069" y="0"></use></g><use xlink:href="#E391-MJMAIN-3D" x="1938" y="0"></use><g transform="translate(2994,0)"><use xlink:href="#E391-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E391-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E391-MJMAIN-28" x="4220" y="0"></use><use xlink:href="#E391-MJMATHI-78" x="4609" y="0"></use><use xlink:href="#E391-MJMAIN-29" x="5181" y="0"></use></g></svg></span><script type="math/tex">a^{(L)}=h_\Theta(x)</script><span> 。</span></p></li><li><p><span>运行反向传播算法,从输出层开始计算每一层预测的</span><strong><span>误差</span></strong><span>(error),以此来求取偏导。</span></p><p><img src="images/20180120_105744.png" referrerpolicy="no-referrer"></p><p><span>输出层的误差即为预测与训练集结果的之间的差值:</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.629ex" height="2.928ex" viewBox="0 -956.9 6298.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E392-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E392-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E392-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E392-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E392-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E392-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E392-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E392-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E392-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E392-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E392-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E392-MJMAIN-29" x="1069" y="0"></use></g><use xlink:href="#E392-MJMAIN-3D" x="1862" y="0"></use><g transform="translate(2918,0)"><use xlink:href="#E392-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E392-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E392-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E392-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E392-MJMAIN-2212" x="4801" y="0"></use><use xlink:href="#E392-MJMATHI-79" x="5801" y="0"></use></g></svg></span><script type="math/tex">\delta^{(L)} = a^{(L)} - y</script><span>,</span></p><p><span>对于隐藏层中每一层的误差,都通过上一层的误差来计算:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="55.329ex" height="3.861ex" viewBox="0 -1107.7 23822.2 1662.6" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E393-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E393-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E393-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E393-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E393-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E393-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E393-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E393-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E393-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E393-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E393-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E393-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E393-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E393-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E393-MJMAIN-66" d="M273 0Q255 3 146 3Q43 3 34 0H26V46H42Q70 46 91 49Q99 52 103 60Q104 62 104 224V385H33V431H104V497L105 564L107 574Q126 639 171 668T266 704Q267 704 275 704T289 705Q330 702 351 679T372 627Q372 604 358 590T321 576T284 590T270 627Q270 647 288 667H284Q280 668 273 668Q245 668 223 647T189 592Q183 572 182 497V431H293V385H185V225Q185 63 186 61T189 57T194 54T199 51T206 49T213 48T222 47T231 47T241 46T251 46H282V0H273Z"></path><path stroke-width="0" id="E393-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E393-MJMAIN-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path><path stroke-width="0" id="E393-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E393-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E393-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E393-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E393-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E393-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E393-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E393-MJMAIN-3D" x="1591" y="0"></use><use xlink:href="#E393-MJMAIN-28" x="2647" y="0"></use><g transform="translate(3036,0)"><use xlink:href="#E393-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-29" x="687" y="0"></use></g></g><g transform="translate(4675,0)"><use xlink:href="#E393-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-54" x="550" y="513"></use></g><g transform="translate(5662,0)"><use xlink:href="#E393-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E393-MJMAIN-2E" x="7879" y="0"></use><use xlink:href="#E393-MJMAIN-2217" x="8324" y="0"></use><g transform="translate(9074,0)"><g transform="translate(120,0)"><rect stroke="none" width="1503" height="60" x="0" y="220"></rect><g transform="translate(60,419)"><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,256)"><use transform="scale(0.5)" xlink:href="#E393-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E393-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E393-MJMAIN-29" x="687" y="0"></use></g></g></g><g transform="translate(81,-484)"><use transform="scale(0.707)" xlink:href="#E393-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E393-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E393-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E393-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E393-MJMAIN-29" x="687" y="0"></use></g></g></g></g></g><g transform="translate(12207,0)"><use xlink:href="#E393-MJMAIN-66"></use><use xlink:href="#E393-MJMAIN-6F" x="306" y="0"></use><use xlink:href="#E393-MJMAIN-72" x="806" y="0"></use></g><use xlink:href="#E393-MJMATHI-6C" x="13655" y="0"></use><g transform="translate(14230,0)"><use xlink:href="#E393-MJMAIN-3A"></use><use xlink:href="#E393-MJMAIN-3D" x="278" y="0"></use></g><use xlink:href="#E393-MJMATHI-4C" x="15564" y="0"></use><use xlink:href="#E393-MJMAIN-2212" x="16467" y="0"></use><use xlink:href="#E393-MJMAIN-31" x="17468" y="0"></use><use xlink:href="#E393-MJMAIN-2C" x="17968" y="0"></use><use xlink:href="#E393-MJMATHI-4C" x="18412" y="0"></use><use xlink:href="#E393-MJMAIN-2212" x="19316" y="0"></use><use xlink:href="#E393-MJMAIN-32" x="20316" y="0"></use><use xlink:href="#E393-MJMAIN-2C" x="20816" y="0"></use><use xlink:href="#E393-MJMAIN-2026" x="21260" y="0"></use><use xlink:href="#E393-MJMAIN-2C" x="22599" y="0"></use><g transform="translate(23044,0)"><use xlink:href="#E393-MJMAIN-32"></use><use xlink:href="#E393-MJMAIN-2E" x="500" y="0"></use></g></g></svg></span><script type="math/tex">\delta^{(l)} = (\Theta^{(l)})^T\delta^{(l+1)} .*\ \frac{\partial a^{(l)}}{\partial z^{(l)}}\; \; \; \; \; \text{for }l := L-1, L-2,\dots,2.</script></p><p><span>隐藏层中,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.228ex" height="2.461ex" viewBox="0 -956.9 1389.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E396-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E396-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E396-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E396-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E396-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E396-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E396-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E396-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">a^{(l)}</script><span> 即为增加偏置单元后的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.01ex" height="2.928ex" viewBox="0 -956.9 2587.8 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E395-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E395-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E395-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E395-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E395-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E395-MJMATHI-67" x="0" y="0"></use><use xlink:href="#E395-MJMAIN-28" x="480" y="0"></use><g transform="translate(869,0)"><use xlink:href="#E395-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E395-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E395-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E395-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E395-MJMAIN-29" x="2198" y="0"></use></g></svg></span><script type="math/tex">g(z^{(l)})</script><span>,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.228ex" height="2.461ex" viewBox="0 -956.9 1389.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E396-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E396-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E396-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E396-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E396-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E396-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E396-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E396-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">a^{(l)}</script><span> 与 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.806ex" height="2.461ex" viewBox="0 -956.9 1638.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E468-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E468-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E468-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E468-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E468-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E468-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E468-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E468-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(l)}</script><span> 维度匹配,得以完成矩阵运算。</span></p><p><span>即对于隐藏层,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.239ex" height="2.928ex" viewBox="0 -956.9 5700.2 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E463-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E463-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E463-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E463-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E463-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E463-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E463-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E463-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E463-MJMAIN-3D" x="1667" y="0"></use><use xlink:href="#E463-MJMAIN-28" x="2723" y="0"></use><use xlink:href="#E463-MJMATHI-67" x="3112" y="0"></use><use xlink:href="#E463-MJMAIN-28" x="3592" y="0"></use><g transform="translate(3981,0)"><use xlink:href="#E463-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E463-MJMAIN-29" x="5311" y="0"></use></g></svg></span><script type="math/tex">a^{(l)} = (g(z^{(l)})</script><span> 添加偏置单元 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.39ex" height="3.511ex" viewBox="0 -1107.7 3612.4 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E464-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E464-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E464-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E464-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E464-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E464-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E464-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E464-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,521)"><use transform="scale(0.707)" xlink:href="#E464-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E464-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E464-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E464-MJMAIN-30" x="748" y="-434"></use><use xlink:href="#E464-MJMAIN-3D" x="1667" y="0"></use><use xlink:href="#E464-MJMAIN-31" x="2723" y="0"></use><use xlink:href="#E464-MJMAIN-29" x="3223" y="0"></use></g></svg></span><script type="math/tex">a^{(l)}_0 = 1)</script></p><p><span>解得 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="43.456ex" height="3.628ex" viewBox="0 -1007.2 18710.1 1562" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E400-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E400-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E400-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E400-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E400-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E400-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E400-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E400-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path stroke-width="0" id="E400-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E400-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E400-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E400-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1461" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-2202" x="749" y="593"></use><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E400-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E400-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E400-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E400-MJMAIN-29" x="687" y="0"></use></g></g></g></g><use xlink:href="#E400-MJMATHI-67" x="1701" y="0"></use><use xlink:href="#E400-MJMAIN-28" x="2181" y="0"></use><g transform="translate(2570,0)"><use xlink:href="#E400-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E400-MJMAIN-29" x="3900" y="0"></use><use xlink:href="#E400-MJMAIN-3D" x="4566" y="0"></use><g transform="translate(5622,0)"><use xlink:href="#E400-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-2032" x="680" y="513"></use></g><use xlink:href="#E400-MJMAIN-28" x="6398" y="0"></use><g transform="translate(6787,0)"><use xlink:href="#E400-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E400-MJMAIN-29" x="8116" y="0"></use><use xlink:href="#E400-MJMAIN-3D" x="8783" y="0"></use><use xlink:href="#E400-MJMATHI-67" x="9839" y="0"></use><use xlink:href="#E400-MJMAIN-28" x="10319" y="0"></use><g transform="translate(10708,0)"><use xlink:href="#E400-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E400-MJMAIN-29" x="12038" y="0"></use><use xlink:href="#E400-MJMAIN-2E" x="12427" y="0"></use><use xlink:href="#E400-MJMAIN-2217" x="12871" y="0"></use><use xlink:href="#E400-MJMAIN-28" x="13621" y="0"></use><use xlink:href="#E400-MJMAIN-31" x="14010" y="0"></use><use xlink:href="#E400-MJMAIN-2212" x="14733" y="0"></use><use xlink:href="#E400-MJMATHI-67" x="15733" y="0"></use><use xlink:href="#E400-MJMAIN-28" x="16213" y="0"></use><g transform="translate(16602,0)"><use xlink:href="#E400-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E400-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E400-MJMAIN-29" x="17932" y="0"></use><use xlink:href="#E400-MJMAIN-29" x="18321" y="0"></use></g></svg></span><script type="math/tex">\frac{\partial}{\partial z^{(l)}}g(z^{(l)})=g'(z^{(l)})=g(z^{(l)}) .* \ (1-g(z^{(l)}))</script><span>,</span></p><p><span>则有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="45.795ex" height="3.511ex" viewBox="0 -1107.7 19717.4 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E401-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E401-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E401-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E401-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E401-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E401-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E401-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E401-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E401-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E401-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E401-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E401-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E401-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E401-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E401-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E401-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E401-MJMAIN-3D" x="1591" y="0"></use><use xlink:href="#E401-MJMAIN-28" x="2647" y="0"></use><g transform="translate(3036,0)"><use xlink:href="#E401-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-29" x="687" y="0"></use></g></g><g transform="translate(4675,0)"><use xlink:href="#E401-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-54" x="550" y="513"></use></g><g transform="translate(5662,0)"><use xlink:href="#E401-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E401-MJMAIN-2E" x="7879" y="0"></use><use xlink:href="#E401-MJMAIN-2217" x="8324" y="0"></use><g transform="translate(9074,0)"><use xlink:href="#E401-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E401-MJMAIN-2E" x="10464" y="0"></use><use xlink:href="#E401-MJMAIN-2217" x="10909" y="0"></use><use xlink:href="#E401-MJMAIN-28" x="11659" y="0"></use><use xlink:href="#E401-MJMAIN-31" x="12048" y="0"></use><use xlink:href="#E401-MJMAIN-2212" x="12770" y="0"></use><g transform="translate(13770,0)"><use xlink:href="#E401-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E401-MJMAIN-29" x="15160" y="0"></use><use xlink:href="#E401-MJMAIN-2C" x="15549" y="0"></use><g transform="translate(16494,0)"><use xlink:href="#E401-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,521)"><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E401-MJMAIN-30" x="748" y="-434"></use></g><use xlink:href="#E401-MJMAIN-3D" x="18161" y="0"></use><use xlink:href="#E401-MJMAIN-31" x="19217" y="0"></use></g></svg></span><script type="math/tex">\delta^{(l)} = (\Theta^{(l)})^T\delta^{(l+1)} .*\ a^{(l)} .*\ (1-a^{(l)}), \ \ a^{(l)}_0 = 1</script><span>。</span></p><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.052ex" height="2.461ex" viewBox="0 -956.9 1314 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E412-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E412-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E412-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E412-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E412-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E412-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E412-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E412-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">\delta^{(l)}</script><span> 求导前的公式不同于视频内容,经核实为视频内容错误。推导请阅下节。</span></p></blockquote><p><span>根据以上公式计算依次每一层的误差 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="19.052ex" height="2.811ex" viewBox="0 -956.9 8202.8 1210.2" role="img" focusable="false" style="vertical-align: -0.588ex;"><defs><path stroke-width="0" id="E403-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E403-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E403-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E403-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E403-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E403-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E403-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E403-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path><path stroke-width="0" id="E403-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E403-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-29" x="1069" y="0"></use></g><use xlink:href="#E403-MJMAIN-2C" x="1584" y="0"></use><g transform="translate(2029,0)"><use xlink:href="#E403-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-29" x="2348" y="0"></use></g></g><use xlink:href="#E403-MJMAIN-2C" x="4517" y="0"></use><use xlink:href="#E403-MJMAIN-2026" x="4962" y="0"></use><use xlink:href="#E403-MJMAIN-2C" x="6301" y="0"></use><g transform="translate(6745,0)"><use xlink:href="#E403-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E403-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">\delta^{(L)}, \delta^{(L-1)},\dots,\delta^{(2)}</script><span>。</span></p></li><li><p><span>依次求解并累加误差 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="22.829ex" height="3.745ex" viewBox="0 -1107.7 9829.2 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E404-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E404-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E404-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E404-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E404-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E404-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E404-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E404-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E404-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E404-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E404-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E404-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E404-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E404-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6A" x="623" y="0"></use></g><g transform="translate(1971,0)"><use xlink:href="#E404-MJMAIN-3A"></use><use xlink:href="#E404-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3305,0)"><use xlink:href="#E404-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6A" x="623" y="0"></use></g></g><use xlink:href="#E404-MJMAIN-2B" x="5221" y="0"></use><g transform="translate(6221,0)"><use xlink:href="#E404-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,521)"><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6A" x="748" y="-429"></use></g><g transform="translate(7611,0)"><use xlink:href="#E404-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,521)"><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E404-MJMAIN-29" x="1964" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E404-MJMATHI-69" x="627" y="-429"></use></g></g></svg></span><script type="math/tex">\Delta^{(l)}_{i,j} := \Delta^{(l)}_{i,j} + a_j^{(l)} \delta_i^{(l+1)}</script><span>,向量化实现即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="26.025ex" height="2.928ex" viewBox="0 -956.9 11205 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E405-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E405-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E405-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E405-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E405-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E405-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E405-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E405-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E405-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E405-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E405-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E405-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,362)"><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(1971,0)"><use xlink:href="#E405-MJMAIN-3A"></use><use xlink:href="#E405-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3305,0)"><use xlink:href="#E405-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,362)"><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E405-MJMAIN-2B" x="5221" y="0"></use><g transform="translate(6221,0)"><use xlink:href="#E405-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E405-MJMAIN-28" x="8439" y="0"></use><g transform="translate(8828,0)"><use xlink:href="#E405-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMAIN-29" x="687" y="0"></use></g></g><g transform="translate(10218,0)"><use xlink:href="#E405-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E405-MJMATHI-54" x="550" y="513"></use></g></g></svg></span><script type="math/tex">\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)}(a^{(l)})^T</script></p></li></ol></li><li><p><span>遍历全部样本实例,求解完 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.935ex" height="1.994ex" viewBox="0 -806.1 833 858.4" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E406-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E406-MJMAIN-394" x="0" y="0"></use></g></svg></span><script type="math/tex">\Delta</script><span> 后,最后则求得偏导 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="16.563ex" height="5.029ex" viewBox="0 -1107.7 7131.2 2165.1" role="img" focusable="false" style="vertical-align: -2.456ex;"><defs><path stroke-width="0" id="E407-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E407-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E407-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E407-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E407-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E407-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E407-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E407-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E407-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E407-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E407-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1679" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E407-MJMAIN-2202" x="904" y="593"></use><g transform="translate(60,-648)"><use transform="scale(0.707)" xlink:href="#E407-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E407-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,368)"><use transform="scale(0.5)" xlink:href="#E407-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E407-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E407-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(550,-215)"><use transform="scale(0.5)" xlink:href="#E407-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E407-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.5)" xlink:href="#E407-MJMATHI-6A" x="623" y="0"></use></g></g></g></g><use xlink:href="#E407-MJMATHI-4A" x="1919" y="0"></use><use xlink:href="#E407-MJMAIN-28" x="2552" y="0"></use><use xlink:href="#E407-MJMAIN-398" x="2941" y="0"></use><use xlink:href="#E407-MJMAIN-29" x="3719" y="0"></use><use xlink:href="#E407-MJMAIN-3D" x="4386" y="0"></use><g transform="translate(5442,0)"><use xlink:href="#E407-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,521)"><use transform="scale(0.707)" xlink:href="#E407-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E407-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E407-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(828,-303)"><use transform="scale(0.707)" xlink:href="#E407-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E407-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E407-MJMATHI-6A" x="623" y="0"></use></g></g></g></svg></span><script type="math/tex">\frac \partial {\partial \Theta_{i,j}^{(l)}} J(\Theta)=D_{i,j}^{(l)}</script></p><ul><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="25.248ex" height="5.029ex" viewBox="0 -1409.3 10870.5 2165.1" role="img" focusable="false" style="vertical-align: -1.756ex;"><defs><path stroke-width="0" id="E408-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E408-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E408-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E408-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E408-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E408-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E408-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E408-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E408-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E408-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E408-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E408-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E408-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E408-MJMATHI-3BB" d="M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z"></path><path stroke-width="0" id="E408-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E408-MJSZ2-28" d="M180 96T180 250T205 541T266 770T353 944T444 1069T527 1150H555Q561 1144 561 1141Q561 1137 545 1120T504 1072T447 995T386 878T330 721T288 513T272 251Q272 133 280 56Q293 -87 326 -209T399 -405T475 -531T536 -609T561 -640Q561 -643 555 -649H527Q483 -612 443 -568T353 -443T266 -270T205 -41Z"></path><path stroke-width="0" id="E408-MJSZ2-29" d="M35 1138Q35 1150 51 1150H56H69Q113 1113 153 1069T243 944T330 771T391 541T416 250T391 -40T330 -270T243 -443T152 -568T69 -649H56Q43 -649 39 -647T35 -637Q65 -607 110 -548Q283 -316 316 56Q324 133 324 251Q324 368 316 445Q278 877 48 1123Q36 1137 35 1138Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E408-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,521)"><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(828,-303)"><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-6A" x="623" y="0"></use></g><g transform="translate(1966,0)"><use xlink:href="#E408-MJMAIN-3A"></use><use xlink:href="#E408-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3300,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E408-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E408-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(4538,0)"><use xlink:href="#E408-MJSZ2-28"></use><g transform="translate(597,0)"><use xlink:href="#E408-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-6A" x="623" y="0"></use></g></g><use xlink:href="#E408-MJMAIN-2B" x="2513" y="0"></use><use xlink:href="#E408-MJMATHI-3BB" x="3513" y="0"></use><g transform="translate(4096,0)"><use xlink:href="#E408-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,521)"><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(778,-303)"><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E408-MJMATHI-6A" x="623" y="0"></use></g></g><use xlink:href="#E408-MJSZ2-29" x="5735" y="-1"></use></g></g></svg></span><script type="math/tex">D^{(l)}_{i,j} := \dfrac{1}{m}\left(\Delta^{(l)}_{i,j} + \lambda\Theta^{(l)}_{i,j}\right)</script><span>, if </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.243ex" height="2.577ex" viewBox="-12 -806.1 2257.6 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex; margin-left: -0.028ex;"><defs><path stroke-width="0" id="E409-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E409-MJMAIN-2260" d="M166 -215T159 -215T147 -212T141 -204T139 -197Q139 -190 144 -183L306 133H70Q56 140 56 153Q56 168 72 173H327L406 327H72Q56 332 56 347Q56 360 70 367H426Q597 702 602 707Q605 716 618 716Q625 716 630 712T636 703T638 696Q638 692 471 367H707Q722 359 722 347Q722 336 708 328L451 327L371 173H708Q722 163 722 153Q722 140 707 133H351Q175 -210 170 -212Q166 -215 159 -215Z"></path><path stroke-width="0" id="E409-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E409-MJMATHI-6A" x="0" y="0"></use><use xlink:href="#E409-MJMAIN-2260" x="689" y="0"></use><use xlink:href="#E409-MJMAIN-30" x="1745" y="0"></use></g></svg></span><script type="math/tex">j\neq0</script><span>,</span></li><li><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.475ex" height="5.029ex" viewBox="0 -1409.3 6232.2 2165.1" role="img" focusable="false" style="vertical-align: -1.756ex;"><defs><path stroke-width="0" id="E410-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E410-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E410-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E410-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E410-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E410-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E410-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E410-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E410-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E410-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E410-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E410-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E410-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,521)"><use transform="scale(0.707)" xlink:href="#E410-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(828,-303)"><use transform="scale(0.707)" xlink:href="#E410-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMATHI-6A" x="623" y="0"></use></g><g transform="translate(1966,0)"><use xlink:href="#E410-MJMAIN-3A"></use><use xlink:href="#E410-MJMAIN-3D" x="278" y="0"></use></g><g transform="translate(3300,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E410-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E410-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(4538,0)"><use xlink:href="#E410-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E410-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E410-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E410-MJMATHI-6A" x="623" y="0"></use></g></g></g></svg></span><script type="math/tex">D^{(l)}_{i,j} := \dfrac{1}{m}\Delta^{(l)}_{i,j}</script><span>, if </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.243ex" height="2.461ex" viewBox="-12 -755.9 2257.6 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex; margin-left: -0.028ex;"><defs><path stroke-width="0" id="E411-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E411-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E411-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E411-MJMATHI-6A" x="0" y="0"></use><use xlink:href="#E411-MJMAIN-3D" x="689" y="0"></use><use xlink:href="#E411-MJMAIN-30" x="1745" y="0"></use></g></svg></span><script type="math/tex">j=0</script><span>.(对应于偏置单元)</span></li></ul></li></ol><blockquote><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.052ex" height="2.461ex" viewBox="0 -956.9 1314 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E412-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E412-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E412-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E412-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E412-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E412-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E412-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E412-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">\delta^{(l)}</script><span>: 第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E417-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E417-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> 层的误差向量</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.052ex" height="3.511ex" viewBox="0 -1107.7 1314 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E414-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E414-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E414-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E414-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E414-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E414-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,521)"><use transform="scale(0.707)" xlink:href="#E414-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E414-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E414-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E414-MJMATHI-69" x="627" y="-429"></use></g></svg></span><script type="math/tex">\delta^{(l)}_i</script><span>: 第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E417-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E417-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> 层的第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.801ex" height="1.994ex" viewBox="0 -755.9 345 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E27-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E27-MJMATHI-69" x="0" y="0"></use></g></svg></span><script type="math/tex">i</script><span> 个激活单元的误差</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.934ex" height="3.745ex" viewBox="0 -1107.7 1693.8 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E420-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E420-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E420-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E420-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E420-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E420-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E420-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E420-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E420-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E420-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMATHI-6A" x="623" y="0"></use></g></g></svg></span><script type="math/tex">\Delta^{(l)}_{i,j}</script><span>: 从第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.692ex" height="1.994ex" viewBox="0 -755.9 298 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E417-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E417-MJMATHI-6C" x="0" y="0"></use></g></svg></span><script type="math/tex">l</script><span> 层的第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.985ex" height="2.461ex" viewBox="-12 -755.9 424 1059.4" role="img" focusable="false" style="vertical-align: -0.705ex; margin-left: -0.028ex;"><defs><path stroke-width="0" id="E61-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E61-MJMATHI-6A" x="0" y="0"></use></g></svg></span><script type="math/tex">j</script><span> 个单元映射到第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.693ex" height="2.11ex" viewBox="0 -755.9 2020.4 908.7" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E418-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E418-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E418-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E418-MJMATHI-6C" x="0" y="0"></use><use xlink:href="#E418-MJMAIN-2B" x="520" y="0"></use><use xlink:href="#E418-MJMAIN-31" x="1520" y="0"></use></g></svg></span><script type="math/tex">l+1</script><span> 层的第 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.801ex" height="1.994ex" viewBox="0 -755.9 345 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E27-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E27-MJMATHI-69" x="0" y="0"></use></g></svg></span><script type="math/tex">i</script><span> 个单元的权重代价的偏导(所有样本实例之和)</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.922ex" height="3.745ex" viewBox="0 -1107.7 1688.8 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E419-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path><path stroke-width="0" id="E419-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E419-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E419-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E419-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E419-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E419-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E419-MJMATHI-44" x="0" y="0"></use><g transform="translate(828,521)"><use transform="scale(0.707)" xlink:href="#E419-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E419-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E419-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(828,-303)"><use transform="scale(0.707)" xlink:href="#E419-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E419-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E419-MJMATHI-6A" x="623" y="0"></use></g></g></svg></span><script type="math/tex">D^{(l)}_{i,j}</script><span>: </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.934ex" height="3.745ex" viewBox="0 -1107.7 1693.8 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E420-MJMAIN-394" d="M51 0Q46 4 46 7Q46 9 215 357T388 709Q391 716 416 716Q439 716 444 709Q447 705 616 357T786 7Q786 4 781 0H51ZM507 344L384 596L137 92L383 91H630Q630 93 507 344Z"></path><path stroke-width="0" id="E420-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E420-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E420-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E420-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E420-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E420-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E420-MJMAIN-394" x="0" y="0"></use><g transform="translate(833,521)"><use transform="scale(0.707)" xlink:href="#E420-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(833,-303)"><use transform="scale(0.707)" xlink:href="#E420-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E420-MJMATHI-6A" x="623" y="0"></use></g></g></svg></span><script type="math/tex">\Delta^{(l)}_{i,j}</script><span> 的样本均值与正则化项之和</span></p><p>&nbsp;</p><p><span>注:无需计算 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.384ex" height="2.461ex" viewBox="0 -956.9 1456.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E424-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E424-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E424-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E424-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E424-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E424-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E424-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E424-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\delta^{(1)}</script><span>,因为输入没有误差。</span></p></blockquote><p><span>这就是反向传播算法,即从输出层开始不断</span><strong><span>向前迭代</span></strong><span>,根据</span><strong><span>上一层</span></strong><span>的误差依次计算当前层的误差,以求得代价函数的偏导。</span></p><blockquote><p><span>应用反向传播(BP)算法的神经网络被称为 BP 网络,也称前馈网络(向前反馈)。</span></p></blockquote><p>&nbsp;</p><p><span>《机器学习》一书中提到的 BP 网络强大之处:</span></p><blockquote><p><span>任何布尔函数都可由两层神经网络准确表达,但所需的中间单元的数量随输入呈指数级增长;</span></p><p><span>任何连续函数都可由两层神经网络以任意精度逼近;</span></p><p><span>任何函数都可由三层神经网络以任意程度逼近。</span></p></blockquote><h2><a name="93-直观理解反向传播backpropagation-intuition" class="md-header-anchor"></a><span>9.3 直观理解反向传播(Backpropagation Intuition)</span></h2><p><span>这节给出了反向传播算法中误差的数学意义:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="56.633ex" height="2.928ex" viewBox="0 -956.9 24383.4 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E422-MJMATHI-63" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path stroke-width="0" id="E422-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E422-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E422-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path><path stroke-width="0" id="E422-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E422-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E422-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E422-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E422-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E422-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E422-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E422-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E422-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E422-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E422-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E422-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E422-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E422-MJMATHI-63" x="0" y="0"></use><use xlink:href="#E422-MJMATHI-6F" x="433" y="0"></use><use xlink:href="#E422-MJMATHI-73" x="918" y="0"></use><use xlink:href="#E422-MJMATHI-74" x="1387" y="0"></use><use xlink:href="#E422-MJMAIN-28" x="1748" y="0"></use><use xlink:href="#E422-MJMATHI-74" x="2137" y="0"></use><use xlink:href="#E422-MJMAIN-29" x="2498" y="0"></use><use xlink:href="#E422-MJMAIN-3D" x="3164" y="0"></use><g transform="translate(4220,0)"><use xlink:href="#E422-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMATHI-74" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-29" x="749" y="0"></use></g></g><g transform="translate(6041,0)"><use xlink:href="#E422-MJMAIN-6C"></use><use xlink:href="#E422-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E422-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E422-MJMAIN-28" x="7319" y="0"></use><g transform="translate(7708,0)"><use xlink:href="#E422-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E422-MJMAIN-28" x="8934" y="0"></use><g transform="translate(9323,0)"><use xlink:href="#E422-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMATHI-74" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-29" x="749" y="0"></use></g></g><use xlink:href="#E422-MJMAIN-29" x="10801" y="0"></use><use xlink:href="#E422-MJMAIN-29" x="11190" y="0"></use><use xlink:href="#E422-MJMAIN-2B" x="11801" y="0"></use><use xlink:href="#E422-MJMAIN-28" x="12801" y="0"></use><use xlink:href="#E422-MJMAIN-31" x="13190" y="0"></use><use xlink:href="#E422-MJMAIN-2212" x="13912" y="0"></use><g transform="translate(14913,0)"><use xlink:href="#E422-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,362)"><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMATHI-74" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-29" x="749" y="0"></use></g></g><use xlink:href="#E422-MJMAIN-29" x="16317" y="0"></use><g transform="translate(17123,0)"><use xlink:href="#E422-MJMAIN-6C"></use><use xlink:href="#E422-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E422-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E422-MJMAIN-28" x="18401" y="0"></use><use xlink:href="#E422-MJMAIN-31" x="18790" y="0"></use><use xlink:href="#E422-MJMAIN-2212" x="19512" y="0"></use><g transform="translate(20512,0)"><use xlink:href="#E422-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E422-MJMAIN-28" x="21738" y="0"></use><g transform="translate(22127,0)"><use xlink:href="#E422-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,362)"><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMATHI-74" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E422-MJMAIN-29" x="749" y="0"></use></g></g><use xlink:href="#E422-MJMAIN-29" x="23605" y="0"></use><use xlink:href="#E422-MJMAIN-29" x="23994" y="0"></use></g></svg></span><script type="math/tex">cost(t) =y^{(t)} \ \log (h_\Theta (x^{(t)})) + (1 - y^{(t)})\ \log (1 - h_\Theta(x^{(t)}))</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="18.096ex" height="7.013ex" viewBox="0 -1459.5 7791.3 3019.6" role="img" focusable="false" style="vertical-align: -3.623ex;"><defs><path stroke-width="0" id="E423-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E423-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E423-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E423-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E423-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E423-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E423-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E423-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E423-MJMATHI-63" d="M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z"></path><path stroke-width="0" id="E423-MJMATHI-6F" d="M201 -11Q126 -11 80 38T34 156Q34 221 64 279T146 380Q222 441 301 441Q333 441 341 440Q354 437 367 433T402 417T438 387T464 338T476 268Q476 161 390 75T201 -11ZM121 120Q121 70 147 48T206 26Q250 26 289 58T351 142Q360 163 374 216T388 308Q388 352 370 375Q346 405 306 405Q243 405 195 347Q158 303 140 230T121 120Z"></path><path stroke-width="0" id="E423-MJMATHI-73" d="M131 289Q131 321 147 354T203 415T300 442Q362 442 390 415T419 355Q419 323 402 308T364 292Q351 292 340 300T328 326Q328 342 337 354T354 372T367 378Q368 378 368 379Q368 382 361 388T336 399T297 405Q249 405 227 379T204 326Q204 301 223 291T278 274T330 259Q396 230 396 163Q396 135 385 107T352 51T289 7T195 -10Q118 -10 86 19T53 87Q53 126 74 143T118 160Q133 160 146 151T160 120Q160 94 142 76T111 58Q109 57 108 57T107 55Q108 52 115 47T146 34T201 27Q237 27 263 38T301 66T318 97T323 122Q323 150 302 164T254 181T195 196T148 231Q131 256 131 289Z"></path><path stroke-width="0" id="E423-MJMATHI-74" d="M26 385Q19 392 19 395Q19 399 22 411T27 425Q29 430 36 430T87 431H140L159 511Q162 522 166 540T173 566T179 586T187 603T197 615T211 624T229 626Q247 625 254 615T261 596Q261 589 252 549T232 470L222 433Q222 431 272 431H323Q330 424 330 420Q330 398 317 385H210L174 240Q135 80 135 68Q135 26 162 26Q197 26 230 60T283 144Q285 150 288 151T303 153H307Q322 153 322 145Q322 142 319 133Q314 117 301 95T267 48T216 6T155 -11Q125 -11 98 4T59 56Q57 64 57 83V101L92 241Q127 382 128 383Q128 385 77 385H26Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E423-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,521)"><use transform="scale(0.707)" xlink:href="#E423-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E423-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E423-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E423-MJMATHI-6A" x="627" y="-429"></use><use xlink:href="#E423-MJMAIN-3D" x="1591" y="0"></use><g transform="translate(2647,0)"><g transform="translate(120,0)"><rect stroke="none" width="2016" height="60" x="0" y="220"></rect><use xlink:href="#E423-MJMAIN-2202" x="724" y="676"></use><g transform="translate(60,-1018)"><use xlink:href="#E423-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E423-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,521)"><use transform="scale(0.707)" xlink:href="#E423-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E423-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E423-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E423-MJMATHI-6A" x="657" y="-429"></use></g></g></g></g><use xlink:href="#E423-MJMATHI-63" x="4904" y="0"></use><use xlink:href="#E423-MJMATHI-6F" x="5337" y="0"></use><use xlink:href="#E423-MJMATHI-73" x="5822" y="0"></use><use xlink:href="#E423-MJMATHI-74" x="6291" y="0"></use><use xlink:href="#E423-MJMAIN-28" x="6652" y="0"></use><use xlink:href="#E423-MJMATHI-74" x="7041" y="0"></use><use xlink:href="#E423-MJMAIN-29" x="7402" y="0"></use></g></svg></span><script type="math/tex">\delta_j^{(l)} = \dfrac{\partial}{\partial z_j^{(l)}} cost(t)</script></p><p><span>视频内容实际在上文都涉及到了,上节也做了解释:</span></p><blockquote><p><span>反向传播算法,即从输出层开始不断</span><strong><span>向前迭代</span></strong><span>,根据</span><strong><span>上一层</span></strong><span>的误差依次计算当前层的误差,以求得代价函数的偏导。</span></p></blockquote><p><span>不过,这块还是有些不好理解,可回顾视频。</span></p><p><span>前文提到输入层没有偏差,所以没有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.384ex" height="2.461ex" viewBox="0 -956.9 1456.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E424-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E424-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E424-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E424-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E424-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E424-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E424-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E424-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\delta^{(1)}</script><span>,同样的,偏置单元的值始终为 1,也没有误差,故一般会选择</span><strong><span>忽略偏置单元项的误差</span></strong><span>。</span></p><p>&nbsp;</p><p><strong><span>神经网络中代价函数求导的推导过程</span></strong><span>:</span></p><p><span>代价函数无正则化项时:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="69.103ex" height="6.78ex" viewBox="0 -1710.8 29752.5 2919" role="img" focusable="false" style="vertical-align: -2.806ex;"><defs><path stroke-width="0" id="E425-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E425-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E425-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E425-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E425-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E425-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E425-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E425-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E425-MJSZ2-2211" d="M60 948Q63 950 665 950H1267L1325 815Q1384 677 1388 669H1348L1341 683Q1320 724 1285 761Q1235 809 1174 838T1033 881T882 898T699 902H574H543H251L259 891Q722 258 724 252Q725 250 724 246Q721 243 460 -56L196 -356Q196 -357 407 -357Q459 -357 548 -357T676 -358Q812 -358 896 -353T1063 -332T1204 -283T1307 -196Q1328 -170 1348 -124H1388Q1388 -125 1381 -145T1356 -210T1325 -294L1267 -449L666 -450Q64 -450 61 -448Q55 -446 55 -439Q55 -437 57 -433L590 177Q590 178 557 222T452 366T322 544L56 909L55 924Q55 945 60 948Z"></path><path stroke-width="0" id="E425-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E425-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E425-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E425-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E425-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E425-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E425-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E425-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E425-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E425-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path><path stroke-width="0" id="E425-MJSZ2-5B" d="M224 -649V1150H455V1099H275V-598H455V-649H224Z"></path><path stroke-width="0" id="E425-MJSZ2-5D" d="M16 1099V1150H247V-649H16V-598H196V1099H16Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,66)"><use xlink:href="#E425-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E425-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E425-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E425-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E425-MJMAIN-3D" x="2466" y="0"></use><use xlink:href="#E425-MJMAIN-2212" x="3522" y="0"></use><g transform="translate(4300,0)"><g transform="translate(120,0)"><rect stroke="none" width="998" height="60" x="0" y="220"></rect><use xlink:href="#E425-MJMAIN-31" x="249" y="676"></use><use xlink:href="#E425-MJMATHI-6D" x="60" y="-686"></use></g></g><g transform="translate(5705,0)"><use xlink:href="#E425-MJSZ2-2211" x="0" y="0"></use><g transform="translate(148,-1088)"><use transform="scale(0.707)" xlink:href="#E425-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-3D" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-31" x="1123" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E425-MJMATHI-6D" x="582" y="1626"></use></g><g transform="translate(7315,0)"><use xlink:href="#E425-MJSZ2-5B"></use><g transform="translate(472,0)"><use xlink:href="#E425-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-29" x="733" y="0"></use></g></g><g transform="translate(2031,0)"><use xlink:href="#E425-MJMAIN-6C"></use><use xlink:href="#E425-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E425-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E425-MJMAIN-28" x="3309" y="0"></use><use xlink:href="#E425-MJMAIN-28" x="3698" y="0"></use><g transform="translate(4087,0)"><use xlink:href="#E425-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E425-MJMAIN-28" x="5314" y="0"></use><g transform="translate(5703,0)"><use xlink:href="#E425-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E425-MJMAIN-29" x="7169" y="0"></use><use xlink:href="#E425-MJMAIN-29" x="7558" y="0"></use><use xlink:href="#E425-MJMAIN-29" x="7947" y="0"></use><use xlink:href="#E425-MJMAIN-2B" x="8558" y="0"></use><use xlink:href="#E425-MJMAIN-28" x="9558" y="0"></use><use xlink:href="#E425-MJMAIN-31" x="9947" y="0"></use><use xlink:href="#E425-MJMAIN-2212" x="10669" y="0"></use><g transform="translate(11669,0)"><use xlink:href="#E425-MJMATHI-79" x="0" y="0"></use><g transform="translate(499,412)"><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E425-MJMAIN-29" x="13063" y="0"></use><g transform="translate(13618,0)"><use xlink:href="#E425-MJMAIN-6C"></use><use xlink:href="#E425-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E425-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E425-MJMAIN-28" x="14896" y="0"></use><use xlink:href="#E425-MJMAIN-31" x="15285" y="0"></use><use xlink:href="#E425-MJMAIN-2212" x="16008" y="0"></use><use xlink:href="#E425-MJMAIN-28" x="17008" y="0"></use><g transform="translate(17397,0)"><use xlink:href="#E425-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E425-MJMAIN-28" x="18623" y="0"></use><g transform="translate(19012,0)"><use xlink:href="#E425-MJMATHI-78" x="0" y="0"></use><g transform="translate(572,412)"><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMATHI-69" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E425-MJMAIN-29" x="733" y="0"></use></g></g><use xlink:href="#E425-MJMAIN-29" x="20478" y="0"></use><use xlink:href="#E425-MJMAIN-29" x="20867" y="0"></use><use xlink:href="#E425-MJMAIN-29" x="21256" y="0"></use><use xlink:href="#E425-MJSZ2-5D" x="21645" y="-1"></use></g></g></g></g></g></svg></span><script type="math/tex">\begin{gather*} J(\Theta) = - \frac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log ((h_\Theta (x^{(i)}))) + (1 - y^{(i)})\log (1 - (h_\Theta(x^{(i)})))\right] \end{gather*}</script></p><p><span>再次的,为了方便起见,这里假设样本只有一个,则有:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="53.269ex" height="2.811ex" viewBox="0 -856.4 22935.2 1210.2" role="img" focusable="false" style="vertical-align: -0.822ex;"><defs><path stroke-width="0" id="E426-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E426-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E426-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E426-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E426-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E426-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E426-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E426-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E426-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E426-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E426-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E426-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E426-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E426-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E426-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E426-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(167,0)"><g transform="translate(-15,0)"><g transform="translate(0,-25)"><use xlink:href="#E426-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E426-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E426-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E426-MJMAIN-3D" x="2466" y="0"></use><use xlink:href="#E426-MJMAIN-2212" x="3522" y="0"></use><g transform="translate(4467,0)"><use xlink:href="#E426-MJMAIN-5B" x="0" y="0"></use><use xlink:href="#E426-MJMATHI-79" x="278" y="0"></use><g transform="translate(941,0)"><use xlink:href="#E426-MJMAIN-6C"></use><use xlink:href="#E426-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E426-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E426-MJMAIN-28" x="2219" y="0"></use><use xlink:href="#E426-MJMAIN-28" x="2608" y="0"></use><g transform="translate(2997,0)"><use xlink:href="#E426-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E426-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E426-MJMAIN-28" x="4223" y="0"></use><use xlink:href="#E426-MJMATHI-78" x="4612" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="5184" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="5573" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="5962" y="0"></use><use xlink:href="#E426-MJMAIN-2B" x="6574" y="0"></use><use xlink:href="#E426-MJMAIN-28" x="7574" y="0"></use><use xlink:href="#E426-MJMAIN-31" x="7963" y="0"></use><use xlink:href="#E426-MJMAIN-2212" x="8685" y="0"></use><use xlink:href="#E426-MJMATHI-79" x="9685" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="10182" y="0"></use><g transform="translate(10738,0)"><use xlink:href="#E426-MJMAIN-6C"></use><use xlink:href="#E426-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E426-MJMAIN-67" x="778" y="0"></use></g><use xlink:href="#E426-MJMAIN-28" x="12016" y="0"></use><use xlink:href="#E426-MJMAIN-31" x="12405" y="0"></use><use xlink:href="#E426-MJMAIN-2212" x="13127" y="0"></use><use xlink:href="#E426-MJMAIN-28" x="14127" y="0"></use><g transform="translate(14516,0)"><use xlink:href="#E426-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E426-MJMAIN-398" x="814" y="-218"></use></g><use xlink:href="#E426-MJMAIN-28" x="15742" y="0"></use><use xlink:href="#E426-MJMATHI-78" x="16131" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="16703" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="17092" y="0"></use><use xlink:href="#E426-MJMAIN-29" x="17481" y="0"></use><use xlink:href="#E426-MJMAIN-5D" x="17870" y="0"></use></g></g></g></g></g></svg></span><script type="math/tex">\begin{gather*} J(\Theta) = -\left[y \log ((h_\Theta (x))) + (1 - y)\log (1 - (h_\Theta(x)))\right] \end{gather*}</script></p><p><span>忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="22.674ex" height="2.928ex" viewBox="0 -956.9 9762.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E427-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E427-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E427-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E427-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E427-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E427-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E427-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E427-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E427-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E427-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E427-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E427-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E427-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E427-MJMATHI-78" x="1615" y="0"></use><use xlink:href="#E427-MJMAIN-29" x="2187" y="0"></use><use xlink:href="#E427-MJMAIN-3D" x="2853" y="0"></use><g transform="translate(3909,0)"><use xlink:href="#E427-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E427-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E427-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E427-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E427-MJMAIN-3D" x="5848" y="0"></use><use xlink:href="#E427-MJMATHI-67" x="6903" y="0"></use><use xlink:href="#E427-MJMAIN-28" x="7383" y="0"></use><g transform="translate(7772,0)"><use xlink:href="#E427-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E427-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E427-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E427-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E427-MJMAIN-29" x="9373" y="0"></use></g></svg></span><script type="math/tex">h_\Theta(x) = a^{(L)} = g(z^{(L)})</script><span>,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.321ex" height="3.628ex" viewBox="0 -956.9 5735.5 1562" role="img" focusable="false" style="vertical-align: -1.405ex;"><defs><path stroke-width="0" id="E231-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E231-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E231-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E231-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E231-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E231-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E231-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E231-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E231-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E231-MJMATHI-67" x="0" y="0"></use><use xlink:href="#E231-MJMAIN-28" x="480" y="0"></use><use xlink:href="#E231-MJMATHI-7A" x="869" y="0"></use><use xlink:href="#E231-MJMAIN-29" x="1337" y="0"></use><use xlink:href="#E231-MJMAIN-3D" x="2003" y="0"></use><g transform="translate(2781,0)"><g transform="translate(397,0)"><rect stroke="none" width="2435" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E231-MJMAIN-31" x="1472" y="571"></use><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E231-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E231-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E231-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E231-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E231-MJMAIN-2212" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E231-MJMATHI-7A" x="1167" y="0"></use><use transform="scale(0.5)" xlink:href="#E231-MJMAIN-29" x="1635" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">g(z) = \frac{1}{1+e^{(-z)}}</script><span>,代入后整理后可得:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="48.559ex" height="4.445ex" viewBox="0 -1208.2 20907.4 1913.9" role="img" focusable="false" style="vertical-align: -1.639ex;"><defs><path stroke-width="0" id="E428-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E428-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E428-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E428-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E428-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E428-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E428-MJMAIN-6C" d="M42 46H56Q95 46 103 60V68Q103 77 103 91T103 124T104 167T104 217T104 272T104 329Q104 366 104 407T104 482T104 542T103 586T103 603Q100 622 89 628T44 637H26V660Q26 683 28 683L38 684Q48 685 67 686T104 688Q121 689 141 690T171 693T182 694H185V379Q185 62 186 60Q190 52 198 49Q219 46 247 46H263V0H255L232 1Q209 2 183 2T145 3T107 3T57 1L34 0H26V46H42Z"></path><path stroke-width="0" id="E428-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E428-MJMAIN-67" d="M329 409Q373 453 429 453Q459 453 472 434T485 396Q485 382 476 371T449 360Q416 360 412 390Q410 404 415 411Q415 412 416 414V415Q388 412 363 393Q355 388 355 386Q355 385 359 381T368 369T379 351T388 325T392 292Q392 230 343 187T222 143Q172 143 123 171Q112 153 112 133Q112 98 138 81Q147 75 155 75T227 73Q311 72 335 67Q396 58 431 26Q470 -13 470 -72Q470 -139 392 -175Q332 -206 250 -206Q167 -206 107 -175Q29 -140 29 -75Q29 -39 50 -15T92 18L103 24Q67 55 67 108Q67 155 96 193Q52 237 52 292Q52 355 102 398T223 442Q274 442 318 416L329 409ZM299 343Q294 371 273 387T221 404Q192 404 171 388T145 343Q142 326 142 292Q142 248 149 227T179 192Q196 182 222 182Q244 182 260 189T283 207T294 227T299 242Q302 258 302 292T299 343ZM403 -75Q403 -50 389 -34T348 -11T299 -2T245 0H218Q151 0 138 -6Q118 -15 107 -34T95 -74Q95 -84 101 -97T122 -127T170 -155T250 -167Q319 -167 361 -139T403 -75Z"></path><path stroke-width="0" id="E428-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E428-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E428-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E428-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E428-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E428-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E428-MJSZ2-28" d="M180 96T180 250T205 541T266 770T353 944T444 1069T527 1150H555Q561 1144 561 1141Q561 1137 545 1120T504 1072T447 995T386 878T330 721T288 513T272 251Q272 133 280 56Q293 -87 326 -209T399 -405T475 -531T536 -609T561 -640Q561 -643 555 -649H527Q483 -612 443 -568T353 -443T266 -270T205 -41Z"></path><path stroke-width="0" id="E428-MJSZ2-29" d="M35 1138Q35 1150 51 1150H56H69Q113 1113 153 1069T243 944T330 771T391 541T416 250T391 -40T330 -270T243 -443T152 -568T69 -649H56Q43 -649 39 -647T35 -637Q65 -607 110 -548Q283 -316 316 56Q324 133 324 251Q324 368 316 445Q278 877 48 1123Q36 1137 35 1138Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E428-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E428-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E428-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E428-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E428-MJMAIN-3D" x="2466" y="0"></use><use xlink:href="#E428-MJMATHI-79" x="3522" y="0"></use><g transform="translate(4186,0)"><use xlink:href="#E428-MJMAIN-6C"></use><use xlink:href="#E428-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E428-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(5464,0)"><use xlink:href="#E428-MJSZ2-28"></use><use xlink:href="#E428-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E428-MJMAIN-2B" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E428-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E428-MJMAIN-2212" x="0" y="0"></use><g transform="translate(550,0)"><use transform="scale(0.707)" xlink:href="#E428-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E428-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E428-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E428-MJMAIN-29" x="1070" y="0"></use></g></g></g></g><use xlink:href="#E428-MJSZ2-29" x="4567" y="-1"></use></g><use xlink:href="#E428-MJMAIN-2B" x="10850" y="0"></use><g transform="translate(11851,0)"><use xlink:href="#E428-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E428-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E428-MJMAIN-2212" x="1111" y="0"></use><use xlink:href="#E428-MJMATHI-79" x="2111" y="0"></use><use xlink:href="#E428-MJMAIN-29" x="2608" y="0"></use></g><g transform="translate(15015,0)"><use xlink:href="#E428-MJMAIN-6C"></use><use xlink:href="#E428-MJMAIN-6F" x="278" y="0"></use><use xlink:href="#E428-MJMAIN-67" x="778" y="0"></use></g><g transform="translate(16293,0)"><use xlink:href="#E428-MJSZ2-28"></use><use xlink:href="#E428-MJMAIN-31" x="597" y="0"></use><use xlink:href="#E428-MJMAIN-2B" x="1319" y="0"></use><g transform="translate(2319,0)"><use xlink:href="#E428-MJMATHI-65" x="0" y="0"></use><g transform="translate(466,362)"><use transform="scale(0.707)" xlink:href="#E428-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E428-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E428-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E428-MJMAIN-29" x="1070" y="0"></use></g></g></g><use xlink:href="#E428-MJSZ2-29" x="4017" y="-1"></use></g></g></svg></span><script type="math/tex">J(\Theta) ={y}\log \left( 1+{{e}^{-z^{(L)}}} \right)+\left( 1-{y} \right)\log \left( 1+{{e}^{z^{(L)}}} \right)</script></p><p><img src="images/20180121_110111.png" referrerpolicy="no-referrer"></p><p><span>再次为了便于计算,我们用到如上图这个三层(输入层一般不计数)神经网络。</span></p><p><span>忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="17.418ex" height="2.461ex" viewBox="0 -956.9 7499.4 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E479-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E479-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E479-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E479-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E479-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E479-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E479-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E479-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E479-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E479-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E479-MJMAIN-3D" x="1607" y="0"></use><g transform="translate(2663,0)"><use xlink:href="#E479-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-2212" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="1964" y="0"></use></g></g><g transform="translate(5205,0)"><use xlink:href="#E479-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-2212" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="1964" y="0"></use></g></g></g></svg></span><script type="math/tex">z^{(l)} = \Theta^{(l-1)}a^{(l-1)}</script><span>,我们有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="35.797ex" height="2.928ex" viewBox="0 -956.9 15412.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E430-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E430-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E430-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E430-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E430-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E430-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E430-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E430-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E430-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E430-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E430-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E430-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E430-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E430-MJMATHI-78" x="1615" y="0"></use><use xlink:href="#E430-MJMAIN-29" x="2187" y="0"></use><use xlink:href="#E430-MJMAIN-3D" x="2853" y="0"></use><g transform="translate(3909,0)"><use xlink:href="#E430-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E430-MJMAIN-3D" x="5720" y="0"></use><use xlink:href="#E430-MJMATHI-67" x="6775" y="0"></use><use xlink:href="#E430-MJMAIN-28" x="7255" y="0"></use><g transform="translate(7644,0)"><use xlink:href="#E430-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E430-MJMAIN-29" x="9117" y="0"></use><use xlink:href="#E430-MJMAIN-3D" x="9784" y="0"></use><use xlink:href="#E430-MJMATHI-67" x="10840" y="0"></use><use xlink:href="#E430-MJMAIN-28" x="11320" y="0"></use><g transform="translate(11709,0)"><use xlink:href="#E430-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(13490,0)"><use xlink:href="#E430-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E430-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E430-MJMAIN-29" x="15023" y="0"></use></g></svg></span><script type="math/tex">h_\Theta(x)=a^{(4)}= g(z^{(4)})=g(\Theta^{(3)}a^{(3)})</script></p><p><span>观察考虑各变量与 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.138ex" height="2.461ex" viewBox="0 -956.9 1781.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E443-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E443-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E443-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E443-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E443-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(3)}</script><span> 之间的关系,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="27.041ex" height="2.928ex" viewBox="0 -956.9 11642.7 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E432-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E432-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E432-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E432-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E432-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E432-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E432-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E432-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E432-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E432-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E432-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E432-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E432-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E432-MJMAIN-2192" x="2466" y="0"></use><g transform="translate(3744,0)"><use xlink:href="#E432-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E432-MJMAIN-2192" x="5555" y="0"></use><g transform="translate(6832,0)"><use xlink:href="#E432-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E432-MJMAIN-2192" x="8583" y="0"></use><g transform="translate(9860,0)"><use xlink:href="#E432-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E432-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">J(\Theta) \rightarrow a^{(4)}\rightarrow z^{(4)}\rightarrow \Theta^{(3)}</script></p><p><span>要计算 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 的偏导,就要按照关系不断往前看,每一次回头看,就称为一次反向传播。</span></p><p><span>把回头看的关系说的“微积分一点”,那就是 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.138ex" height="2.461ex" viewBox="0 -956.9 1781.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E443-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E443-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E443-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E443-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E443-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(3)}</script><span> 的微小改变会引起 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.42ex" height="2.461ex" viewBox="0 -956.9 1472.6 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E436-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E436-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E436-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E436-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E436-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E436-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E436-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E436-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">z^{(4)}</script><span> 的改变, </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.42ex" height="2.461ex" viewBox="0 -956.9 1472.6 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E436-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E436-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E436-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E436-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E436-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E436-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E436-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E436-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">z^{(4)}</script><span> 的微小改变会引起 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.56ex" height="2.461ex" viewBox="0 -956.9 1532.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E438-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E438-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E438-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E438-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E438-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E438-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E438-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E438-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">a^{(4)}</script><span> 的改变,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.56ex" height="2.461ex" viewBox="0 -956.9 1532.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E438-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E438-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E438-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E438-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E438-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E438-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E438-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E438-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">a^{(4)}</script><span> 的微小改变又会引起 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E439-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E439-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E439-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E439-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E439-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E439-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E439-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E439-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex"> J(\Theta)</script><span> 的改变,关系方向也可以反过来写:</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="27.041ex" height="2.928ex" viewBox="0 -956.9 11642.7 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E440-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E440-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E440-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E440-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E440-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E440-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E440-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E440-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E440-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E440-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-29" x="888" y="0"></use></g><use xlink:href="#E440-MJMAIN-2192" x="2059" y="0"></use><g transform="translate(3337,0)"><use xlink:href="#E440-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E440-MJMAIN-2192" x="5087" y="0"></use><g transform="translate(6365,0)"><use xlink:href="#E440-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E440-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E440-MJMAIN-2192" x="8175" y="0"></use><use xlink:href="#E440-MJMATHI-4A" x="9453" y="0"></use><use xlink:href="#E440-MJMAIN-28" x="10086" y="0"></use><use xlink:href="#E440-MJMAIN-398" x="10475" y="0"></use><use xlink:href="#E440-MJMAIN-29" x="11253" y="0"></use></g></svg></span><script type="math/tex">\Theta^{(3)} \rightarrow z^{(4)} \rightarrow a^{(4)} \rightarrow J(\Theta) </script><span>。</span></p><p><span>如果你还记得微积分(不然你应该也不会看到这里(</span><span>*</span><span>^_^</span><span>*</span><span>)~),听起来像不像在暗示链式求导?</span></p><p><span>令 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="15.185ex" height="3.628ex" viewBox="0 -1007.2 6537.8 1562" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E441-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E441-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E441-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E441-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E441-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E441-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E441-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E441-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E441-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E441-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E441-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E441-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E441-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E441-MJMAIN-3D" x="1591" y="0"></use><g transform="translate(2369,0)"><g transform="translate(397,0)"><rect stroke="none" width="1461" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E441-MJMAIN-2202" x="749" y="593"></use><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E441-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E441-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E441-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E441-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E441-MJMAIN-29" x="687" y="0"></use></g></g></g></g></g><use xlink:href="#E441-MJMATHI-4A" x="4348" y="0"></use><use xlink:href="#E441-MJMAIN-28" x="4981" y="0"></use><use xlink:href="#E441-MJMAIN-398" x="5370" y="0"></use><use xlink:href="#E441-MJMAIN-29" x="6148" y="0"></use></g></svg></span><script type="math/tex">\delta^{(l)} = \frac{\partial}{\partial z^{(l)}} J(\Theta)</script><span>,则有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 关于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.138ex" height="2.461ex" viewBox="0 -956.9 1781.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E443-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E443-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E443-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E443-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E443-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E443-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(3)}</script><span> 的偏导:</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="34.105ex" height="4.328ex" viewBox="0 -1208.2 14684 1863.6" role="img" focusable="false" style="vertical-align: -1.522ex;"><defs><path stroke-width="0" id="E444-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E444-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E444-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E444-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E444-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E444-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E444-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E444-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E444-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E444-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="975" y="593"></use><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-29" x="889" y="0"></use></g></g></g></g><use xlink:href="#E444-MJMATHI-4A" x="2020" y="0"></use><use xlink:href="#E444-MJMAIN-28" x="2653" y="0"></use><use xlink:href="#E444-MJMAIN-398" x="3042" y="0"></use><use xlink:href="#E444-MJMAIN-29" x="3820" y="0"></use><use xlink:href="#E444-MJMAIN-3D" x="4487" y="0"></use><g transform="translate(5265,0)"><g transform="translate(397,0)"><rect stroke="none" width="2068" height="60" x="0" y="220"></rect><g transform="translate(60,581)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E444-MJMATHI-4A" x="567" y="0"></use><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-28" x="1200" y="0"></use><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-398" x="1589" y="0"></use><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-29" x="2367" y="0"></use></g><g transform="translate(313,-484)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E444-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><g transform="translate(7852,0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><g transform="translate(169,419)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E444-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><use xlink:href="#E444-MJMAIN-3D" x="10150" y="0"></use><g transform="translate(11206,0)"><use xlink:href="#E444-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(12663,0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><g transform="translate(169,419)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E444-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E444-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E444-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">\frac{\partial}{\partial\Theta^{(3)}} J(\Theta) = \frac{\partial J(\Theta)}{\partial z^{(4)}} \frac{\partial z^{(4)}}{\partial\Theta^{(3)}} = \delta^{(4)}\frac{\partial z^{(4)}}{\partial\Theta^{(3)}}</script></p><p><span>再次忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="17.418ex" height="2.461ex" viewBox="0 -956.9 7499.4 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E479-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E479-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E479-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E479-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E479-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E479-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E479-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E479-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E479-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E479-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E479-MJMAIN-3D" x="1607" y="0"></use><g transform="translate(2663,0)"><use xlink:href="#E479-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-2212" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="1964" y="0"></use></g></g><g transform="translate(5205,0)"><use xlink:href="#E479-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-2212" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="1964" y="0"></use></g></g></g></svg></span><script type="math/tex">z^{(l)} = \Theta^{(l-1)}a^{(l-1)}</script><span>,则 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.351ex" height="4.095ex" viewBox="0 -1107.7 4887 1763.1" role="img" focusable="false" style="vertical-align: -1.522ex;"><defs><path stroke-width="0" id="E446-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E446-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E446-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E446-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E446-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E446-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E446-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E446-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E446-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><g transform="translate(169,419)"><use transform="scale(0.707)" xlink:href="#E446-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E446-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E446-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E446-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E446-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E446-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E446-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E446-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E446-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E446-MJMAIN-29" x="889" y="0"></use></g></g></g></g><use xlink:href="#E446-MJMAIN-3D" x="2298" y="0"></use><g transform="translate(3354,0)"><use xlink:href="#E446-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E446-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E446-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E446-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">\frac{\partial z^{(4)}}{\partial\Theta^{(3)}} = a^{(3)}</script></p><p><span>则对于输出层,我们证得 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="19.818ex" height="3.861ex" viewBox="0 -1007.2 8532.8 1662.6" role="img" focusable="false" style="vertical-align: -1.522ex;"><defs><path stroke-width="0" id="E447-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E447-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E447-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E447-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E447-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E447-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E447-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E447-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E447-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E447-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-2202" x="975" y="593"></use><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E447-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E447-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E447-MJMAIN-29" x="889" y="0"></use></g></g></g></g><use xlink:href="#E447-MJMATHI-4A" x="2020" y="0"></use><use xlink:href="#E447-MJMAIN-28" x="2653" y="0"></use><use xlink:href="#E447-MJMAIN-398" x="3042" y="0"></use><use xlink:href="#E447-MJMAIN-29" x="3820" y="0"></use><use xlink:href="#E447-MJMAIN-3D" x="4487" y="0"></use><g transform="translate(5543,0)"><use xlink:href="#E447-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(7076,0)"><use xlink:href="#E447-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E447-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">\frac{\partial}{\partial\Theta^{(3)}} J(\Theta) = a^{(3)}\delta^{(4)}</script><span>。</span></p><p><span>再次忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.418ex" height="3.511ex" viewBox="0 -956.9 5346.5 1511.8" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E448-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E448-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E448-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E448-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E448-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E448-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E448-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E448-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E448-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E448-MJMATHI-67" x="0" y="0"></use><use xlink:href="#E448-MJMAIN-28" x="480" y="0"></use><use xlink:href="#E448-MJMATHI-7A" x="869" y="0"></use><use xlink:href="#E448-MJMAIN-29" x="1337" y="0"></use><use xlink:href="#E448-MJMAIN-3D" x="2003" y="0"></use><g transform="translate(2781,0)"><g transform="translate(397,0)"><rect stroke="none" width="2046" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E448-MJMAIN-31" x="1197" y="571"></use><g transform="translate(60,-401)"><use transform="scale(0.707)" xlink:href="#E448-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E448-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E448-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E448-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E448-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">g(z) = \frac{1}{1+e^{-z}}</script><span>,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.594ex" height="2.928ex" viewBox="0 -956.9 5852.8 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E449-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E449-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E449-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E449-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E449-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E449-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E449-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E449-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E449-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E449-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E449-MJMAIN-29" x="1069" y="0"></use></g><use xlink:href="#E449-MJMAIN-3D" x="1938" y="0"></use><use xlink:href="#E449-MJMATHI-67" x="2994" y="0"></use><use xlink:href="#E449-MJMAIN-28" x="3474" y="0"></use><g transform="translate(3863,0)"><use xlink:href="#E449-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E449-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E449-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E449-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E449-MJMAIN-29" x="5463" y="0"></use></g></svg></span><script type="math/tex">a^{(L)}=g(z^{(L)})</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="67.197ex" height="5.029ex" viewBox="0 -1359 28931.9 2165.1" role="img" focusable="false" style="vertical-align: -1.872ex;"><defs><path stroke-width="0" id="E450-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E450-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E450-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E450-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E450-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E450-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E450-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E450-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E450-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E450-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E450-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E450-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E450-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E450-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E450-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E450-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E450-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-29" x="888" y="0"></use></g><use xlink:href="#E450-MJMAIN-3D" x="1734" y="0"></use><g transform="translate(2512,0)"><g transform="translate(397,0)"><rect stroke="none" width="1562" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-2202" x="821" y="593"></use><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E450-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><use xlink:href="#E450-MJMATHI-4A" x="4592" y="0"></use><use xlink:href="#E450-MJMAIN-28" x="5225" y="0"></use><use xlink:href="#E450-MJMAIN-398" x="5614" y="0"></use><use xlink:href="#E450-MJMAIN-29" x="6392" y="0"></use><use xlink:href="#E450-MJMAIN-3D" x="7059" y="0"></use><use xlink:href="#E450-MJMATHI-79" x="8115" y="0"></use><g transform="translate(8612,0)"><g transform="translate(120,0)"><rect stroke="none" width="2736" height="60" x="0" y="220"></rect><g transform="translate(236,462)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-2212" x="0" y="0"></use><g transform="translate(550,0)"><use transform="scale(0.707)" xlink:href="#E450-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,256)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-2212" x="0" y="0"></use><g transform="translate(389,0)"><use transform="scale(0.5)" xlink:href="#E450-MJMATHI-7A" x="0" y="0"></use><g transform="translate(234,181)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><g transform="translate(60,-663)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E450-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-2212" x="0" y="0"></use><g transform="translate(389,0)"><use transform="scale(0.5)" xlink:href="#E450-MJMATHI-7A" x="0" y="0"></use><g transform="translate(234,178)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g></g></g><use xlink:href="#E450-MJMAIN-2B" x="11810" y="0"></use><g transform="translate(12811,0)"><use xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use xlink:href="#E450-MJMAIN-31" x="389" y="0"></use><use xlink:href="#E450-MJMAIN-2212" x="1111" y="0"></use><use xlink:href="#E450-MJMATHI-79" x="2111" y="0"></use><use xlink:href="#E450-MJMAIN-29" x="2608" y="0"></use></g><g transform="translate(15808,0)"><g transform="translate(286,0)"><rect stroke="none" width="2347" height="60" x="0" y="220"></rect><g transform="translate(511,412)"><use transform="scale(0.707)" xlink:href="#E450-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,256)"><use transform="scale(0.5)" xlink:href="#E450-MJMATHI-7A" x="0" y="0"></use><g transform="translate(234,181)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-663)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E450-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E450-MJMATHI-7A" x="0" y="0"></use><g transform="translate(234,178)"><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E450-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g></g><use xlink:href="#E450-MJMAIN-3D" x="18840" y="0"></use><use xlink:href="#E450-MJMATHI-67" x="19896" y="0"></use><use xlink:href="#E450-MJMAIN-28" x="20376" y="0"></use><g transform="translate(20765,0)"><use xlink:href="#E450-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E450-MJMAIN-29" x="22237" y="0"></use><use xlink:href="#E450-MJMAIN-2212" x="22848" y="0"></use><use xlink:href="#E450-MJMATHI-79" x="23849" y="0"></use><use xlink:href="#E450-MJMAIN-3D" x="24623" y="0"></use><g transform="translate(25679,0)"><use xlink:href="#E450-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E450-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E450-MJMAIN-2212" x="27434" y="0"></use><use xlink:href="#E450-MJMATHI-79" x="28434" y="0"></use></g></svg></span><script type="math/tex">\delta^{(4)}=\frac{\partial}{\partial z^{(4)}}J(\Theta)={{y}}\frac{-e^{-z^{(4)}}}{1+e^{-z^{(4)}}}+\left( 1-{{y}} \right)\frac{{e^{z^{(4)}}}}{1+e^{z^{(4)}}} = g(z^{(4)}) - y = a^{(4)}-y</script></p><p><span>即证得 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="14.034ex" height="2.928ex" viewBox="0 -956.9 6042.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E451-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E451-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E451-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E451-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E451-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E451-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E451-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E451-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E451-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E451-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E451-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E451-MJMAIN-29" x="888" y="0"></use></g><use xlink:href="#E451-MJMAIN-3D" x="1734" y="0"></use><g transform="translate(2790,0)"><use xlink:href="#E451-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E451-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E451-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E451-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E451-MJMAIN-2212" x="4545" y="0"></use><use xlink:href="#E451-MJMATHI-79" x="5545" y="0"></use></g></svg></span><script type="math/tex">\delta^{(4)} = a^{(4)}-y</script></p><p><span>对于任意的输出层 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.582ex" height="1.994ex" viewBox="0 -755.9 681 858.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E272-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E272-MJMATHI-4C" x="0" y="0"></use></g></svg></span><script type="math/tex">L</script><span> 及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="6.534ex" height="2.461ex" viewBox="0 -956.9 2813.4 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E452-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E452-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E452-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E452-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E452-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E452-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E452-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E452-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E452-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E452-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E452-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E452-MJMAIN-29" x="2348" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(L-1)}</script><span>,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="30.032ex" height="2.928ex" viewBox="0 -956.9 12930.3 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E453-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E453-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E453-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E453-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E453-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E453-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E453-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E453-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E453-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E453-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E453-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E453-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E453-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E453-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E453-MJMAIN-2192" x="2466" y="0"></use><g transform="translate(3744,0)"><use xlink:href="#E453-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E453-MJMAIN-2192" x="5683" y="0"></use><g transform="translate(6960,0)"><use xlink:href="#E453-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E453-MJMAIN-2192" x="8839" y="0"></use><g transform="translate(10116,0)"><use xlink:href="#E453-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E453-MJMAIN-29" x="2348" y="0"></use></g></g></g></svg></span><script type="math/tex">J(\Theta) \rightarrow a^{(L)}\rightarrow z^{(L)}\rightarrow \Theta^{(L-1)}</script><span> 关系不变,故证得:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n120" cid="n120" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-511-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="43.328ex" height="5.496ex" viewBox="0 -1459.5 18655.2 2366.2" role="img" focusable="false" style="vertical-align: -2.106ex; max-width: 100%;"><defs><path stroke-width="0" id="E521-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E521-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E521-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E521-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E521-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E521-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E521-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E521-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E521-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E521-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E521-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E521-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E521-MJMATHI-79" d="M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="3500" height="60" x="0" y="220"></rect><use xlink:href="#E521-MJMAIN-2202" x="1466" y="676"></use><g transform="translate(60,-785)"><use xlink:href="#E521-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E521-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,288)"><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-29" x="2348" y="0"></use></g></g></g></g><use xlink:href="#E521-MJMATHI-4A" x="3740" y="0"></use><use xlink:href="#E521-MJMAIN-28" x="4373" y="0"></use><use xlink:href="#E521-MJMAIN-398" x="4762" y="0"></use><use xlink:href="#E521-MJMAIN-29" x="5540" y="0"></use><use xlink:href="#E521-MJMAIN-3D" x="6207" y="0"></use><g transform="translate(7262,0)"><use xlink:href="#E521-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,412)"><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-2212" x="1069" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-31" x="1848" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-29" x="2348" y="0"></use></g></g><g transform="translate(9827,0)"><use xlink:href="#E521-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,412)"><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E521-MJMAIN-2C" x="11412" y="0"></use><g transform="translate(12356,0)"><use xlink:href="#E521-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,412)"><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E521-MJMAIN-3D" x="14219" y="0"></use><g transform="translate(15275,0)"><use xlink:href="#E521-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,412)"><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E521-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E521-MJMAIN-2212" x="17158" y="0"></use><use xlink:href="#E521-MJMATHI-79" x="18158" y="0"></use></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-511">\frac{\partial}{\partial\Theta^{(L-1)}} J(\Theta) = a^{(L-1)}\delta^{(L)}, \ \ \delta^{(L)} = a^{(L)}-y</script></div></div><p><span>好了,接下来来看一下 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 关于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.138ex" height="2.461ex" viewBox="0 -956.9 1781.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E456-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E456-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E456-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E456-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E456-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E456-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E456-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E456-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(2)}</script><span> 的偏导</span></p><p><span>仍然观察考虑各变量与 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.138ex" height="2.461ex" viewBox="0 -956.9 1781.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E456-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E456-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E456-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E456-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E456-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E456-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E456-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E456-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(2)}</script><span> 之间的关系,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="41.247ex" height="2.928ex" viewBox="0 -956.9 17759.1 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E457-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E457-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E457-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E457-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E457-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E457-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E457-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E457-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E457-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E457-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E457-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E457-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E457-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E457-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E457-MJMAIN-2192" x="2466" y="0"></use><g transform="translate(3744,0)"><use xlink:href="#E457-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E457-MJMAIN-2192" x="5555" y="0"></use><g transform="translate(6832,0)"><use xlink:href="#E457-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E457-MJMAIN-2192" x="8583" y="0"></use><g transform="translate(9860,0)"><use xlink:href="#E457-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E457-MJMAIN-2192" x="11671" y="0"></use><g transform="translate(12949,0)"><use xlink:href="#E457-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E457-MJMAIN-2192" x="14699" y="0"></use><g transform="translate(15977,0)"><use xlink:href="#E457-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E457-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">J(\Theta)\rightarrow a^{(4)} \rightarrow z^{(4)} \rightarrow a^{(3)} \rightarrow z^{(3)} \rightarrow\Theta^{(2)}</script><span> </span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="44.146ex" height="4.328ex" viewBox="0 -1208.2 19007.1 1863.6" role="img" focusable="false" style="vertical-align: -1.522ex;"><defs><path stroke-width="0" id="E458-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E458-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E458-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E458-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E458-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E458-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E458-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E458-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E458-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E458-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E458-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="975" y="593"></use><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-29" x="889" y="0"></use></g></g></g></g><use xlink:href="#E458-MJMATHI-4A" x="2020" y="0"></use><use xlink:href="#E458-MJMAIN-28" x="2653" y="0"></use><use xlink:href="#E458-MJMAIN-398" x="3042" y="0"></use><use xlink:href="#E458-MJMAIN-29" x="3820" y="0"></use><use xlink:href="#E458-MJMAIN-3D" x="4487" y="0"></use><g transform="translate(5265,0)"><g transform="translate(397,0)"><rect stroke="none" width="2068" height="60" x="0" y="220"></rect><g transform="translate(60,581)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMATHI-4A" x="567" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-28" x="1200" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-398" x="1589" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-29" x="2367" y="0"></use></g><g transform="translate(313,-484)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E458-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><g transform="translate(7852,0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><g transform="translate(169,419)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E458-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><use xlink:href="#E458-MJMAIN-3D" x="10150" y="0"></use><g transform="translate(11206,0)"><use xlink:href="#E458-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(12663,0)"><g transform="translate(120,0)"><rect stroke="none" width="1780" height="60" x="0" y="220"></rect><g transform="translate(169,419)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E458-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-585)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-398" x="0" y="0"></use><g transform="translate(550,305)"><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E458-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><use xlink:href="#E458-MJMAIN-3D" x="14961" y="0"></use><g transform="translate(16017,0)"><use xlink:href="#E458-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-32" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(17550,0)"><use xlink:href="#E458-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E458-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">\frac{\partial}{\partial \Theta^{(2)}}J(\Theta) = \frac{\partial J(\Theta)}{\partial z^{(3)}} \frac{\partial z^{(3)}}{\partial \Theta^{(2)}}=\delta^{(3)} \frac{\partial z^{(3)}}{\partial \Theta^{(2)}}= a^{(2)}\delta^{(3)}</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="47.829ex" height="4.095ex" viewBox="0 -1208.2 20593.2 1763.1" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E459-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E459-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E459-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E459-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E459-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E459-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E459-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E459-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E459-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E459-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E459-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E459-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-29" x="888" y="0"></use></g><use xlink:href="#E459-MJMAIN-3D" x="1734" y="0"></use><g transform="translate(2512,0)"><g transform="translate(397,0)"><rect stroke="none" width="1562" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="821" y="593"></use><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><use xlink:href="#E459-MJMATHI-4A" x="4592" y="0"></use><use xlink:href="#E459-MJMAIN-28" x="5225" y="0"></use><use xlink:href="#E459-MJMAIN-398" x="5614" y="0"></use><use xlink:href="#E459-MJMAIN-29" x="6392" y="0"></use><use xlink:href="#E459-MJMAIN-3D" x="7059" y="0"></use><g transform="translate(7837,0)"><g transform="translate(397,0)"><rect stroke="none" width="2068" height="60" x="0" y="220"></rect><g transform="translate(60,581)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-4A" x="567" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-28" x="1200" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-398" x="1589" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-29" x="2367" y="0"></use></g><g transform="translate(313,-484)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><g transform="translate(10423,0)"><g transform="translate(120,0)"><rect stroke="none" width="1604" height="60" x="0" y="220"></rect><g transform="translate(81,419)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,204)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><g transform="translate(12268,0)"><g transform="translate(120,0)"><rect stroke="none" width="1604" height="60" x="0" y="220"></rect><g transform="translate(60,419)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,256)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(81,-484)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><use xlink:href="#E459-MJMAIN-3D" x="14391" y="0"></use><g transform="translate(15446,0)"><use xlink:href="#E459-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(16903,0)"><g transform="translate(120,0)"><rect stroke="none" width="1604" height="60" x="0" y="220"></rect><g transform="translate(81,419)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,204)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g><g transform="translate(18748,0)"><g transform="translate(120,0)"><rect stroke="none" width="1604" height="60" x="0" y="220"></rect><g transform="translate(60,419)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,256)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(81,-484)"><use transform="scale(0.707)" xlink:href="#E459-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E459-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E459-MJMAIN-29" x="889" y="0"></use></g></g></g></g></g></g></svg></span><script type="math/tex">\delta^{(3)} = \frac{\partial}{\partial z^{(3)}}J(\Theta) =\frac{\partial J(\Theta)}{\partial z^{(4)}} \frac{\partial z^{(4)}}{\partial a^{(3)}}\frac{\partial a^{(3)}}{\partial z^{(3)}} = \delta^{(4)}\frac{\partial z^{(4)}}{\partial a^{(3)}}\frac{\partial a^{(3)}}{\partial z^{(3)}}</script></p><p><span>易求得 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="11.52ex" height="3.861ex" viewBox="0 -1107.7 4959.9 1662.6" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E460-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E460-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E460-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E460-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E460-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E460-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E460-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E460-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E460-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1604" height="60" x="0" y="220"></rect><g transform="translate(81,419)"><use transform="scale(0.707)" xlink:href="#E460-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E460-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,256)"><use transform="scale(0.5)" xlink:href="#E460-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E460-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E460-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(60,-484)"><use transform="scale(0.707)" xlink:href="#E460-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E460-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,204)"><use transform="scale(0.5)" xlink:href="#E460-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E460-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E460-MJMAIN-29" x="889" y="0"></use></g></g></g></g><use xlink:href="#E460-MJMAIN-3D" x="2122" y="0"></use><g transform="translate(3178,0)"><use xlink:href="#E460-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E460-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E460-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E460-MJMAIN-29" x="888" y="0"></use></g></g></g></svg></span><script type="math/tex">\frac{\partial z^{(4)}}{\partial a^{(3)}}=\Theta^{(3)}</script></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="62.416ex" height="4.679ex" viewBox="0 -1208.2 26873.6 2014.4" role="img" focusable="false" style="vertical-align: -1.872ex;"><defs><path stroke-width="0" id="E461-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E461-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path stroke-width="0" id="E461-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E461-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E461-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E461-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E461-MJMATHI-65" d="M39 168Q39 225 58 272T107 350T174 402T244 433T307 442H310Q355 442 388 420T421 355Q421 265 310 237Q261 224 176 223Q139 223 138 221Q138 219 132 186T125 128Q125 81 146 54T209 26T302 45T394 111Q403 121 406 121Q410 121 419 112T429 98T420 82T390 55T344 24T281 -1T205 -11Q126 -11 83 42T39 168ZM373 353Q367 405 305 405Q272 405 244 391T199 357T170 316T154 280T149 261Q149 260 169 260Q282 260 327 284T373 353Z"></path><path stroke-width="0" id="E461-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E461-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E461-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E461-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E461-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2032" x="680" y="513"></use><use xlink:href="#E461-MJMAIN-28" x="775" y="0"></use><use xlink:href="#E461-MJMATHI-7A" x="1164" y="0"></use><use xlink:href="#E461-MJMAIN-29" x="1632" y="0"></use><use xlink:href="#E461-MJMAIN-3D" x="2299" y="0"></use><g transform="translate(3077,0)"><g transform="translate(397,0)"><rect stroke="none" width="2917" height="60" x="0" y="220"></rect><g transform="translate(947,412)"><use transform="scale(0.707)" xlink:href="#E461-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,256)"><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMATHI-7A" x="778" y="0"></use></g></g><g transform="translate(60,-575)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2B" x="888" y="0"></use><g transform="translate(1178,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMATHI-7A" x="778" y="0"></use></g></g><g transform="translate(2201,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-32" x="550" y="674"></use></g></g></g></g><use xlink:href="#E461-MJMAIN-3D" x="6790" y="0"></use><g transform="translate(7568,0)"><g transform="translate(397,0)"><rect stroke="none" width="3500" height="60" x="0" y="220"></rect><g transform="translate(60,581)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2B" x="888" y="0"></use><g transform="translate(1178,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,256)"><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMATHI-7A" x="778" y="0"></use></g></g><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-29" x="3114" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2212" x="3503" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="4281" y="0"></use></g><g transform="translate(351,-575)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2B" x="888" y="0"></use><g transform="translate(1178,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMATHI-7A" x="778" y="0"></use></g></g><g transform="translate(2201,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-32" x="550" y="674"></use></g></g></g></g><use xlink:href="#E461-MJMAIN-3D" x="11864" y="0"></use><g transform="translate(12642,0)"><g transform="translate(397,0)"><rect stroke="none" width="2046" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="1197" y="571"></use><g transform="translate(60,-401)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2B" x="500" y="0"></use><g transform="translate(903,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMATHI-7A" x="778" y="0"></use></g></g></g></g></g><use xlink:href="#E461-MJMAIN-2212" x="15429" y="0"></use><g transform="translate(16207,0)"><g transform="translate(342,0)"><rect stroke="none" width="2917" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="1813" y="571"></use><g transform="translate(60,-575)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-2B" x="888" y="0"></use><g transform="translate(1178,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMATHI-65" x="0" y="0"></use><g transform="translate(329,204)"><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMATHI-7A" x="778" y="0"></use></g></g><g transform="translate(2201,0)"><use transform="scale(0.707)" xlink:href="#E461-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E461-MJMAIN-32" x="550" y="674"></use></g></g></g></g><use xlink:href="#E461-MJMAIN-3D" x="19865" y="0"></use><use xlink:href="#E461-MJMATHI-67" x="20921" y="0"></use><use xlink:href="#E461-MJMAIN-28" x="21401" y="0"></use><use xlink:href="#E461-MJMATHI-7A" x="21790" y="0"></use><use xlink:href="#E461-MJMAIN-29" x="22258" y="0"></use><use xlink:href="#E461-MJMAIN-28" x="22647" y="0"></use><use xlink:href="#E461-MJMAIN-31" x="23036" y="0"></use><use xlink:href="#E461-MJMAIN-2212" x="23758" y="0"></use><use xlink:href="#E461-MJMATHI-67" x="24758" y="0"></use><use xlink:href="#E461-MJMAIN-28" x="25238" y="0"></use><use xlink:href="#E461-MJMATHI-7A" x="25627" y="0"></use><use xlink:href="#E461-MJMAIN-29" x="26095" y="0"></use><use xlink:href="#E461-MJMAIN-29" x="26484" y="0"></use></g></svg></span><script type="math/tex">g'(z) =\frac{e^{-z}}{(1+e^{-z})^2}=\frac{(1+e^{-z})-1}{(1+e^{-z})^2}=\frac{1}{1+e^{-z}}-\frac{1}{(1+e^{-z})^2}=g(z)(1-g(z))</script></p><p><span>即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="30.397ex" height="2.928ex" viewBox="0 -956.9 13087.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E462-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E462-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path stroke-width="0" id="E462-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E462-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E462-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E462-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E462-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E462-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E462-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E462-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E462-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E462-MJMATHI-67" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-2032" x="680" y="513"></use><use xlink:href="#E462-MJMAIN-28" x="775" y="0"></use><g transform="translate(1164,0)"><use xlink:href="#E462-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E462-MJMAIN-29" x="2494" y="0"></use><use xlink:href="#E462-MJMAIN-3D" x="3160" y="0"></use><use xlink:href="#E462-MJMATHI-67" x="4216" y="0"></use><use xlink:href="#E462-MJMAIN-28" x="4696" y="0"></use><g transform="translate(5085,0)"><use xlink:href="#E462-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E462-MJMAIN-29" x="6415" y="0"></use><use xlink:href="#E462-MJMAIN-2E" x="6804" y="0"></use><use xlink:href="#E462-MJMAIN-2217" x="7249" y="0"></use><use xlink:href="#E462-MJMAIN-28" x="7999" y="0"></use><use xlink:href="#E462-MJMAIN-31" x="8388" y="0"></use><use xlink:href="#E462-MJMAIN-2212" x="9110" y="0"></use><use xlink:href="#E462-MJMATHI-67" x="10110" y="0"></use><use xlink:href="#E462-MJMAIN-28" x="10590" y="0"></use><g transform="translate(10979,0)"><use xlink:href="#E462-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E462-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E462-MJMAIN-29" x="12309" y="0"></use><use xlink:href="#E462-MJMAIN-29" x="12698" y="0"></use></g></svg></span><script type="math/tex">g'(z^{(l)})=g(z^{(l)}) .* \ (1-g(z^{(l)}))</script></p><p><span>有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="13.239ex" height="2.928ex" viewBox="0 -956.9 5700.2 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E463-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E463-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E463-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E463-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E463-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E463-MJMATHI-67" d="M311 43Q296 30 267 15T206 0Q143 0 105 45T66 160Q66 265 143 353T314 442Q361 442 401 394L404 398Q406 401 409 404T418 412T431 419T447 422Q461 422 470 413T480 394Q480 379 423 152T363 -80Q345 -134 286 -169T151 -205Q10 -205 10 -137Q10 -111 28 -91T74 -71Q89 -71 102 -80T116 -111Q116 -121 114 -130T107 -144T99 -154T92 -162L90 -164H91Q101 -167 151 -167Q189 -167 211 -155Q234 -144 254 -122T282 -75Q288 -56 298 -13Q311 35 311 43ZM384 328L380 339Q377 350 375 354T369 368T359 382T346 393T328 402T306 405Q262 405 221 352Q191 313 171 233T151 117Q151 38 213 38Q269 38 323 108L331 118L384 328Z"></path><path stroke-width="0" id="E463-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E463-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E463-MJMAIN-3D" x="1667" y="0"></use><use xlink:href="#E463-MJMAIN-28" x="2723" y="0"></use><use xlink:href="#E463-MJMATHI-67" x="3112" y="0"></use><use xlink:href="#E463-MJMAIN-28" x="3592" y="0"></use><g transform="translate(3981,0)"><use xlink:href="#E463-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E463-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E463-MJMAIN-29" x="5311" y="0"></use></g></svg></span><script type="math/tex">a^{(l)} = (g(z^{(l)})</script><span> 添加偏置单元 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.39ex" height="3.511ex" viewBox="0 -1107.7 3612.4 1511.8" role="img" focusable="false" style="vertical-align: -0.938ex;"><defs><path stroke-width="0" id="E464-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E464-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E464-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E464-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E464-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E464-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E464-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E464-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,521)"><use transform="scale(0.707)" xlink:href="#E464-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E464-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E464-MJMAIN-29" x="687" y="0"></use></g><use transform="scale(0.707)" xlink:href="#E464-MJMAIN-30" x="748" y="-434"></use><use xlink:href="#E464-MJMAIN-3D" x="1667" y="0"></use><use xlink:href="#E464-MJMAIN-31" x="2723" y="0"></use><use xlink:href="#E464-MJMAIN-29" x="3223" y="0"></use></g></svg></span><script type="math/tex">a^{(l)}_0 = 1)</script><span>,则 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="23.084ex" height="3.861ex" viewBox="0 -1107.7 9938.7 1662.6" role="img" focusable="false" style="vertical-align: -1.289ex;"><defs><path stroke-width="0" id="E465-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E465-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E465-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E465-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E465-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E465-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E465-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E465-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E465-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E465-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E465-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1604" height="60" x="0" y="220"></rect><g transform="translate(60,419)"><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E465-MJMATHI-61" x="0" y="0"></use><g transform="translate(374,256)"><use transform="scale(0.5)" xlink:href="#E465-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E465-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E465-MJMAIN-29" x="889" y="0"></use></g></g></g><g transform="translate(81,-484)"><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-2202" x="0" y="0"></use><g transform="translate(400,0)"><use transform="scale(0.707)" xlink:href="#E465-MJMATHI-7A" x="0" y="0"></use><g transform="translate(331,204)"><use transform="scale(0.5)" xlink:href="#E465-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.5)" xlink:href="#E465-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.5)" xlink:href="#E465-MJMAIN-29" x="889" y="0"></use></g></g></g></g><use xlink:href="#E465-MJMAIN-3D" x="2122" y="0"></use><g transform="translate(3178,0)"><use xlink:href="#E465-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E465-MJMAIN-2E" x="4710" y="0"></use><use xlink:href="#E465-MJMAIN-2217" x="5155" y="0"></use><use xlink:href="#E465-MJMAIN-28" x="5905" y="0"></use><use xlink:href="#E465-MJMAIN-31" x="6294" y="0"></use><use xlink:href="#E465-MJMAIN-2212" x="7016" y="0"></use><g transform="translate(8017,0)"><use xlink:href="#E465-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E465-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E465-MJMAIN-29" x="9549" y="0"></use></g></svg></span><script type="math/tex">\frac{\partial a^{(3)}}{\partial z^{(3)}}=a^{(3)} .*\ (1-a^{(3)})</script><span>,</span></p><blockquote><p><span>证明时为先求导后添加偏置单元,与前向传播算法顺序一致,实际实现时,求导和添加偏置单元的顺序可作调换,由于一般选择忽略偏置单元的误差,所以并不影响结果。</span></p></blockquote><p><span>即证得 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="57.734ex" height="2.928ex" viewBox="0 -956.9 24857.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E466-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E466-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E466-MJMAIN-33" d="M127 463Q100 463 85 480T69 524Q69 579 117 622T233 665Q268 665 277 664Q351 652 390 611T430 522Q430 470 396 421T302 350L299 348Q299 347 308 345T337 336T375 315Q457 262 457 175Q457 96 395 37T238 -22Q158 -22 100 21T42 130Q42 158 60 175T105 193Q133 193 151 175T169 130Q169 119 166 110T159 94T148 82T136 74T126 70T118 67L114 66Q165 21 238 21Q293 21 321 74Q338 107 338 175V195Q338 290 274 322Q259 328 213 329L171 330L168 332Q166 335 166 348Q166 366 174 366Q202 366 232 371Q266 376 294 413T322 525V533Q322 590 287 612Q265 626 240 626Q208 626 181 615T143 592T132 580H135Q138 579 143 578T153 573T165 566T175 555T183 540T186 520Q186 498 172 481T127 463Z"></path><path stroke-width="0" id="E466-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E466-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E466-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E466-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E466-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path><path stroke-width="0" id="E466-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E466-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E466-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E466-MJMAIN-2032" d="M79 43Q73 43 52 49T30 61Q30 68 85 293T146 528Q161 560 198 560Q218 560 240 545T262 501Q262 496 260 486Q259 479 173 263T84 45T79 43Z"></path><path stroke-width="0" id="E466-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E466-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E466-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g><use xlink:href="#E466-MJMAIN-3D" x="1734" y="0"></use><use xlink:href="#E466-MJMAIN-28" x="2790" y="0"></use><g transform="translate(3179,0)"><use xlink:href="#E466-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(4961,0)"><use xlink:href="#E466-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMATHI-54" x="550" y="513"></use></g><g transform="translate(5947,0)"><use xlink:href="#E466-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E466-MJMAIN-2E" x="7404" y="0"></use><use xlink:href="#E466-MJMAIN-2217" x="7849" y="0"></use><use xlink:href="#E466-MJMAIN-28" x="8349" y="0"></use><g transform="translate(8738,0)"><use xlink:href="#E466-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(10271,0)"><use xlink:href="#E466-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-2032" x="550" y="513"></use></g><use xlink:href="#E466-MJMAIN-3D" x="11232" y="0"></use><use xlink:href="#E466-MJMAIN-28" x="12288" y="0"></use><g transform="translate(12677,0)"><use xlink:href="#E466-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><g transform="translate(14458,0)"><use xlink:href="#E466-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMATHI-54" x="550" y="513"></use></g><g transform="translate(15445,0)"><use xlink:href="#E466-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-34" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E466-MJMAIN-2E" x="16902" y="0"></use><use xlink:href="#E466-MJMAIN-2217" x="17347" y="0"></use><g transform="translate(18097,0)"><use xlink:href="#E466-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E466-MJMAIN-2E" x="19629" y="0"></use><use xlink:href="#E466-MJMAIN-2217" x="20074" y="0"></use><use xlink:href="#E466-MJMAIN-28" x="20824" y="0"></use><use xlink:href="#E466-MJMAIN-31" x="21213" y="0"></use><use xlink:href="#E466-MJMAIN-2212" x="21935" y="0"></use><g transform="translate(22935,0)"><use xlink:href="#E466-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-33" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E466-MJMAIN-29" x="888" y="0"></use></g></g><use xlink:href="#E466-MJMAIN-29" x="24468" y="0"></use></g></svg></span><script type="math/tex">\delta^{(3)}=(\Theta^{(3)})^T\delta^{(4)}.*(a^{(3)})'=(\Theta^{(3)})^T\delta^{(4)}.*\ a^{(3)} .*\ (1-a^{(3)})</script></p><p><span>对于任意的隐藏层 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.693ex" height="2.11ex" viewBox="0 -755.9 2020.4 908.7" role="img" focusable="false" style="vertical-align: -0.355ex;"><defs><path stroke-width="0" id="E467-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E467-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E467-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E467-MJMATHI-6C" x="0" y="0"></use><use xlink:href="#E467-MJMAIN-2B" x="520" y="0"></use><use xlink:href="#E467-MJMAIN-31" x="1520" y="0"></use></g></svg></span><script type="math/tex">l + 1</script><span> 及权重矩阵 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="3.806ex" height="2.461ex" viewBox="0 -956.9 1638.8 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E468-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E468-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E468-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E468-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E468-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E468-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E468-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E468-MJMAIN-29" x="687" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(l)}</script><span>,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="51.379ex" height="2.928ex" viewBox="0 -956.9 22121.5 1260.5" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E469-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E469-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E469-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E469-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E469-MJMAIN-2192" d="M56 237T56 250T70 270H835Q719 357 692 493Q692 494 692 496T691 499Q691 511 708 511H711Q720 511 723 510T729 506T732 497T735 481T743 456Q765 389 816 336T935 261Q944 258 944 250Q944 244 939 241T915 231T877 212Q836 186 806 152T761 85T740 35T732 4Q730 -6 727 -8T711 -11Q691 -11 691 0Q691 7 696 25Q728 151 835 230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E469-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E469-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E469-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E469-MJMAIN-22EF" d="M78 250Q78 274 95 292T138 310Q162 310 180 294T199 251Q199 226 182 208T139 190T96 207T78 250ZM525 250Q525 274 542 292T585 310Q609 310 627 294T646 251Q646 226 629 208T586 190T543 207T525 250ZM972 250Q972 274 989 292T1032 310Q1056 310 1074 294T1093 251Q1093 226 1076 208T1033 190T990 207T972 250Z"></path><path stroke-width="0" id="E469-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E469-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E469-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E469-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E469-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E469-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E469-MJMAIN-29" x="1800" y="0"></use><use xlink:href="#E469-MJMAIN-2192" x="2466" y="0"></use><g transform="translate(3744,0)"><use xlink:href="#E469-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E469-MJMAIN-2192" x="5683" y="0"></use><g transform="translate(6960,0)"><use xlink:href="#E469-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMATHI-4C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-29" x="1069" y="0"></use></g></g><use xlink:href="#E469-MJMAIN-2192" x="8839" y="0"></use><use xlink:href="#E469-MJMAIN-22EF" x="10116" y="0"></use><use xlink:href="#E469-MJMAIN-2192" x="11566" y="0"></use><g transform="translate(12844,0)"><use xlink:href="#E469-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E469-MJMAIN-2192" x="15415" y="0"></use><g transform="translate(16693,0)"><use xlink:href="#E469-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E469-MJMAIN-2192" x="19204" y="0"></use><g transform="translate(20482,0)"><use xlink:href="#E469-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E469-MJMAIN-29" x="687" y="0"></use></g></g></g></svg></span><script type="math/tex">J(\Theta)\rightarrow a^{(L)} \rightarrow z^{(L)} \rightarrow \dots \rightarrow a^{(l+1)} \rightarrow z^{(l+1)} \rightarrow\Theta^{(l)}</script><span> 关系不变,故证得:</span></p><div contenteditable="false" spellcheck="false" class="mathjax-block md-end-block md-math-block md-rawblock" id="mathjax-n133" cid="n133" mdtype="math_block"><div class="md-rawblock-container md-math-container" tabindex="-1"><div class="MathJax_SVG_Display" style="text-align: center;"><span class="MathJax_SVG" id="MathJax-Element-512-Frame" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="91.031ex" height="5.496ex" viewBox="0 -1459.5 39193.9 2366.2" role="img" focusable="false" style="vertical-align: -2.106ex; max-width: 100%;"><defs><path stroke-width="0" id="E522-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E522-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E522-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E522-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E522-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E522-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E522-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E522-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path><path stroke-width="0" id="E522-MJMATHI-3B4" d="M195 609Q195 656 227 686T302 717Q319 716 351 709T407 697T433 690Q451 682 451 662Q451 644 438 628T403 612Q382 612 348 641T288 671T249 657T235 628Q235 584 334 463Q401 379 401 292Q401 169 340 80T205 -10H198Q127 -10 83 36T36 153Q36 286 151 382Q191 413 252 434Q252 435 245 449T230 481T214 521T201 566T195 609ZM112 130Q112 83 136 55T204 27Q233 27 256 51T291 111T309 178T316 232Q316 267 309 298T295 344T269 400L259 396Q215 381 183 342T137 256T118 179T112 130Z"></path><path stroke-width="0" id="E522-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E522-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E522-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E522-MJMATHI-54" d="M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z"></path><path stroke-width="0" id="E522-MJMAIN-2E" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E522-MJMAIN-2217" d="M229 286Q216 420 216 436Q216 454 240 464Q241 464 245 464T251 465Q263 464 273 456T283 436Q283 419 277 356T270 286L328 328Q384 369 389 372T399 375Q412 375 423 365T435 338Q435 325 425 315Q420 312 357 282T289 250L355 219L425 184Q434 175 434 161Q434 146 425 136T401 125Q393 125 383 131T328 171L270 213Q283 79 283 63Q283 53 276 44T250 35Q231 35 224 44T216 63Q216 80 222 143T229 213L171 171Q115 130 110 127Q106 124 100 124Q87 124 76 134T64 161Q64 166 64 169T67 175T72 181T81 188T94 195T113 204T138 215T170 230T210 250L74 315Q65 324 65 338Q65 353 74 363T98 374Q106 374 116 368T171 328L229 286Z"></path><path stroke-width="0" id="E522-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E522-MJMAIN-66" d="M273 0Q255 3 146 3Q43 3 34 0H26V46H42Q70 46 91 49Q99 52 103 60Q104 62 104 224V385H33V431H104V497L105 564L107 574Q126 639 171 668T266 704Q267 704 275 704T289 705Q330 702 351 679T372 627Q372 604 358 590T321 576T284 590T270 627Q270 647 288 667H284Q280 668 273 668Q245 668 223 647T189 592Q183 572 182 497V431H293V385H185V225Q185 63 186 61T189 57T194 54T199 51T206 49T213 48T222 47T231 47T241 46T251 46H282V0H273Z"></path><path stroke-width="0" id="E522-MJMAIN-6F" d="M28 214Q28 309 93 378T250 448Q340 448 405 380T471 215Q471 120 407 55T250 -10Q153 -10 91 57T28 214ZM250 30Q372 30 372 193V225V250Q372 272 371 288T364 326T348 362T317 390T268 410Q263 411 252 411Q222 411 195 399Q152 377 139 338T126 246V226Q126 130 145 91Q177 30 250 30Z"></path><path stroke-width="0" id="E522-MJMAIN-72" d="M36 46H50Q89 46 97 60V68Q97 77 97 91T98 122T98 161T98 203Q98 234 98 269T98 328L97 351Q94 370 83 376T38 385H20V408Q20 431 22 431L32 432Q42 433 60 434T96 436Q112 437 131 438T160 441T171 442H174V373Q213 441 271 441H277Q322 441 343 419T364 373Q364 352 351 337T313 322Q288 322 276 338T263 372Q263 381 265 388T270 400T273 405Q271 407 250 401Q234 393 226 386Q179 341 179 207V154Q179 141 179 127T179 101T180 81T180 66V61Q181 59 183 57T188 54T193 51T200 49T207 48T216 47T225 47T235 46T245 46H276V0H267Q249 3 140 3Q37 3 28 0H20V46H36Z"></path><path stroke-width="0" id="E522-MJMAIN-3A" d="M78 370Q78 394 95 412T138 430Q162 430 180 414T199 371Q199 346 182 328T139 310T96 327T78 370ZM78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60Z"></path><path stroke-width="0" id="E522-MJMATHI-4C" d="M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z"></path><path stroke-width="0" id="E522-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path><path stroke-width="0" id="E522-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="2325" height="60" x="0" y="220"></rect><use xlink:href="#E522-MJMAIN-2202" x="879" y="676"></use><g transform="translate(60,-785)"><use xlink:href="#E522-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E522-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,288)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="687" y="0"></use></g></g></g></g><use xlink:href="#E522-MJMATHI-4A" x="2565" y="0"></use><use xlink:href="#E522-MJMAIN-28" x="3198" y="0"></use><use xlink:href="#E522-MJMAIN-398" x="3587" y="0"></use><use xlink:href="#E522-MJMAIN-29" x="4365" y="0"></use><use xlink:href="#E522-MJMAIN-3D" x="5032" y="0"></use><g transform="translate(6088,0)"><use xlink:href="#E522-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="687" y="0"></use></g></g><g transform="translate(7478,0)"><use xlink:href="#E522-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E522-MJMAIN-2C" x="9695" y="0"></use><g transform="translate(10640,0)"><use xlink:href="#E522-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E522-MJMAIN-3D" x="12232" y="0"></use><use xlink:href="#E522-MJMAIN-28" x="13288" y="0"></use><g transform="translate(13677,0)"><use xlink:href="#E522-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="687" y="0"></use></g></g><g transform="translate(15315,0)"><use xlink:href="#E522-MJMAIN-29" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-54" x="550" y="583"></use></g><g transform="translate(16302,0)"><use xlink:href="#E522-MJMATHI-3B4" x="0" y="0"></use><g transform="translate(453,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-2B" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="1964" y="0"></use></g></g><use xlink:href="#E522-MJMAIN-2E" x="18520" y="0"></use><use xlink:href="#E522-MJMAIN-2217" x="18965" y="0"></use><g transform="translate(19715,0)"><use xlink:href="#E522-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E522-MJMAIN-2E" x="21104" y="0"></use><use xlink:href="#E522-MJMAIN-2217" x="21549" y="0"></use><use xlink:href="#E522-MJMAIN-28" x="22299" y="0"></use><use xlink:href="#E522-MJMAIN-31" x="22688" y="0"></use><use xlink:href="#E522-MJMAIN-2212" x="23410" y="0"></use><g transform="translate(24411,0)"><use xlink:href="#E522-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,412)"><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E522-MJMAIN-29" x="687" y="0"></use></g></g><use xlink:href="#E522-MJMAIN-29" x="25800" y="0"></use><g transform="translate(27578,0)"><use xlink:href="#E522-MJMAIN-66"></use><use xlink:href="#E522-MJMAIN-6F" x="306" y="0"></use><use xlink:href="#E522-MJMAIN-72" x="806" y="0"></use></g><use xlink:href="#E522-MJMATHI-6C" x="29026" y="0"></use><g transform="translate(29602,0)"><use xlink:href="#E522-MJMAIN-3A"></use><use xlink:href="#E522-MJMAIN-3D" x="278" y="0"></use></g><use xlink:href="#E522-MJMATHI-4C" x="30936" y="0"></use><use xlink:href="#E522-MJMAIN-2212" x="31839" y="0"></use><use xlink:href="#E522-MJMAIN-31" x="32839" y="0"></use><use xlink:href="#E522-MJMAIN-2C" x="33339" y="0"></use><use xlink:href="#E522-MJMATHI-4C" x="33784" y="0"></use><use xlink:href="#E522-MJMAIN-2212" x="34687" y="0"></use><use xlink:href="#E522-MJMAIN-32" x="35687" y="0"></use><use xlink:href="#E522-MJMAIN-2C" x="36187" y="0"></use><use xlink:href="#E522-MJMAIN-2026" x="36632" y="0"></use><use xlink:href="#E522-MJMAIN-2C" x="37971" y="0"></use><g transform="translate(38415,0)"><use xlink:href="#E522-MJMAIN-32"></use><use xlink:href="#E522-MJMAIN-2E" x="500" y="0"></use></g></g></svg></span></div><script type="math/tex; mode=display" id="MathJax-Element-512">\frac{\partial}{\partial\Theta^{(l)}} J(\Theta) = a^{(l)}\delta^{(l+1)}, \ \ \delta^{(l)} = (\Theta^{(l)})^T\delta^{(l+1)}.*\ a^{(l)} .*\ (1-a^{(l)})\; \; \; \; \; \text{for }l := L-1, L-2,\dots,2.</script></div></div><p><span>再添回为了计算方便去掉的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="2.278ex" height="3.278ex" viewBox="0 -956.9 980.8 1411.3" role="img" focusable="false" style="vertical-align: -1.055ex;"><defs><path stroke-width="0" id="E470-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E470-MJMATHI-6D" d="M21 287Q22 293 24 303T36 341T56 388T88 425T132 442T175 435T205 417T221 395T229 376L231 369Q231 367 232 367L243 378Q303 442 384 442Q401 442 415 440T441 433T460 423T475 411T485 398T493 385T497 373T500 364T502 357L510 367Q573 442 659 442Q713 442 746 415T780 336Q780 285 742 178T704 50Q705 36 709 31T724 26Q752 26 776 56T815 138Q818 149 821 151T837 153Q857 153 857 145Q857 144 853 130Q845 101 831 73T785 17T716 -10Q669 -10 648 17T627 73Q627 92 663 193T700 345Q700 404 656 404H651Q565 404 506 303L499 291L466 157Q433 26 428 16Q415 -11 385 -11Q372 -11 364 -4T353 8T350 18Q350 29 384 161L420 307Q423 322 423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 181Q151 335 151 342Q154 357 154 369Q154 405 129 405Q107 405 92 377T69 316T57 280Q55 278 41 278H27Q21 284 21 287Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="740" height="60" x="0" y="220"></rect><use transform="scale(0.707)" xlink:href="#E470-MJMAIN-31" x="273" y="571"></use><use transform="scale(0.707)" xlink:href="#E470-MJMATHI-6D" x="84" y="-488"></use></g></g></svg></span><script type="math/tex">\frac{1}{m}</script><span> 和正则化项(时刻记住偏置单元不正则化)等,即可得上节中 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 的偏导。</span></p><p>&nbsp;</p><p><span>证明结束,留个课后作业呀,自己来计算一下 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 关于 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.138ex" height="2.461ex" viewBox="0 -956.9 1781.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E473-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E473-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E473-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E473-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E473-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E473-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E473-MJMAIN-31" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E473-MJMAIN-29" x="888" y="0"></use></g></g></svg></span><script type="math/tex">\Theta^{(1)}</script><span> 的偏导,是不是能得到同样的结果?</span></p><h2><a name="94-实现注意点-参数展开implementation-note-unrolling-parameters" class="md-header-anchor"></a><span>9.4 实现注意点: 参数展开(Implementation Note: Unrolling Parameters)</span></h2><p><span>在 Octave/Matlab 中,如果要使用类似于 </span><code>fminunc</code><span> 等高级最优化函数,其函数参数、函数返回值等都为且只为向量,而由于神经网络中的权重是多维矩阵,所以需要用到参数展开这个技巧。</span></p><p><span>说白了,这个技巧就是把多个矩阵转换为一个长长的向量,便于传入函数,之后再根据矩阵维度,转回矩阵即可。</span></p><p><span>Octave/Matlab 代码:</span></p><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang="octave"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="octave"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 36px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 28px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>9</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -28px; width: 28px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">% 多个矩阵展开为一个向量</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta1</span> = <span class="cm-builtin">ones</span>(<span class="cm-number">11</span>, <span class="cm-number">10</span>); &nbsp; &nbsp;<span class="cm-comment">% 创建维度为 11 * 10 的矩阵</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta2</span> = <span class="cm-builtin">ones</span>(<span class="cm-number">2</span>, <span class="cm-number">4</span>) <span class="cm-operator">*</span> <span class="cm-number">2</span>; &nbsp;<span class="cm-comment">% 创建维度为 2 * 4 的矩阵</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">ThetaVec</span> = [<span class="cm-variable">Theta1</span>(:); <span class="cm-variable">Theta2</span>(:)]; <span class="cm-comment">% 将上面两个矩阵展开为向量</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">% 从一个向量重构还原回多个矩阵</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta1</span> = <span class="cm-builtin">reshape</span>(<span class="cm-variable">ThetaVec</span>(<span class="cm-number">1</span>:<span class="cm-number">110</span>), <span class="cm-number">11</span>, <span class="cm-number">10</span>)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta2</span> = <span class="cm-builtin">reshape</span>(<span class="cm-variable">ThetaVec</span>(<span class="cm-number">111</span>:<span class="cm-number">118</span>), <span class="cm-number">2</span>, <span class="cm-number">4</span>)</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">9</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-comment">% Theta2 = reshape(ThetaVec(111:(111 + 2 * 4) - 1), 2, 4)</span></span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 207px;"></div><div class="CodeMirror-gutters" style="height: 207px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 27px;"></div></div></div></div></pre><blockquote><p><code>reshape(A,m,n)</code><span>: 将向量 A 重构为 m * n 维矩阵。</span></p></blockquote><h2><a name="95-梯度检验gradient-checking" class="md-header-anchor"></a><span>9.5 梯度检验(Gradient Checking)</span></h2><p><span>由于神经网络模型中的反向传播算法较为复杂,在小细节非常容易出错,从而无法得到最优解,故引入梯度检验。</span></p><p><span>梯度检验采用数值估算(Numerical estimation)梯度的方法,被用于验证反向传播算法的正确性。</span></p><p><img src="images/20180125_162704.png" referrerpolicy="no-referrer"></p><p><span>把视 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.807ex" height="2.11ex" viewBox="0 -806.1 778 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E288-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E288-MJMAIN-398" x="0" y="0"></use></g></svg></span><script type="math/tex">\Theta</script><span> 为一个实数,数值估算梯度的原理如上图所示,即有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="33.55ex" height="5.496ex" viewBox="0 -1560 14444.9 2366.2" role="img" focusable="false" style="vertical-align: -1.872ex;"><defs><path stroke-width="0" id="E474-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E474-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E474-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E474-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E474-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E474-MJMAIN-2248" d="M55 319Q55 360 72 393T114 444T163 472T205 482Q207 482 213 482T223 483Q262 483 296 468T393 413L443 381Q502 346 553 346Q609 346 649 375T694 454Q694 465 698 474T708 483Q722 483 722 452Q722 386 675 338T555 289Q514 289 468 310T388 357T308 404T224 426Q164 426 125 393T83 318Q81 289 69 289Q55 289 55 319ZM55 85Q55 126 72 159T114 210T163 238T205 248Q207 248 213 248T223 249Q262 249 296 234T393 179L443 147Q502 112 553 112Q609 112 649 141T694 220Q694 249 708 249T722 217Q722 153 675 104T555 55Q514 55 468 76T388 123T308 170T224 192Q164 192 125 159T83 84Q80 55 69 55Q55 55 55 85Z"></path><path stroke-width="0" id="E474-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E474-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path><path stroke-width="0" id="E474-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E474-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1465" height="60" x="0" y="220"></rect><use xlink:href="#E474-MJMAIN-2202" x="449" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E474-MJMAIN-2202" x="0" y="0"></use><use xlink:href="#E474-MJMAIN-398" x="567" y="0"></use></g></g><use xlink:href="#E474-MJMATHI-4A" x="1705" y="0"></use><use xlink:href="#E474-MJMAIN-28" x="2338" y="0"></use><use xlink:href="#E474-MJMAIN-398" x="2727" y="0"></use><use xlink:href="#E474-MJMAIN-29" x="3505" y="0"></use><use xlink:href="#E474-MJMAIN-2248" x="4171" y="0"></use><g transform="translate(5227,0)"><g transform="translate(120,0)"><rect stroke="none" width="8977" height="60" x="0" y="220"></rect><g transform="translate(60,715)"><use xlink:href="#E474-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E474-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E474-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E474-MJMAIN-2B" x="2022" y="0"></use><use xlink:href="#E474-MJMATHI-3F5" x="3022" y="0"></use><use xlink:href="#E474-MJMAIN-29" x="3428" y="0"></use><use xlink:href="#E474-MJMAIN-2212" x="4039" y="0"></use><use xlink:href="#E474-MJMATHI-4A" x="5039" y="0"></use><use xlink:href="#E474-MJMAIN-28" x="5672" y="0"></use><use xlink:href="#E474-MJMAIN-398" x="6061" y="0"></use><use xlink:href="#E474-MJMAIN-2212" x="7062" y="0"></use><use xlink:href="#E474-MJMATHI-3F5" x="8062" y="0"></use><use xlink:href="#E474-MJMAIN-29" x="8468" y="0"></use></g><g transform="translate(4035,-686)"><use xlink:href="#E474-MJMAIN-32" x="0" y="0"></use><use xlink:href="#E474-MJMATHI-3F5" x="500" y="0"></use></g></g></g></g></svg></span><script type="math/tex">\dfrac{\partial}{\partial\Theta}J(\Theta) \approx \dfrac{J(\Theta + \epsilon) - J(\Theta - \epsilon)}{2\epsilon}</script></p><p><span>其中,</span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.943ex" height="1.41ex" viewBox="0 -504.6 406 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E484-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E484-MJMATHI-3F5" x="0" y="0"></use></g></svg></span><script type="math/tex">\epsilon</script><span> 为极小值,由于太小时容易出现数值运算问题,一般取 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="4.654ex" height="2.461ex" viewBox="0 -956.9 2003.7 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E476-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E476-MJMAIN-30" d="M96 585Q152 666 249 666Q297 666 345 640T423 548Q460 465 460 320Q460 165 417 83Q397 41 362 16T301 -15T250 -22Q224 -22 198 -16T137 16T82 83Q39 165 39 320Q39 494 96 585ZM321 597Q291 629 250 629Q208 629 178 597Q153 571 145 525T137 333Q137 175 145 125T181 46Q209 16 250 16Q290 16 318 46Q347 76 354 130T362 333Q362 478 354 524T321 597Z"></path><path stroke-width="0" id="E476-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E476-MJMAIN-34" d="M462 0Q444 3 333 3Q217 3 199 0H190V46H221Q241 46 248 46T265 48T279 53T286 61Q287 63 287 115V165H28V211L179 442Q332 674 334 675Q336 677 355 677H373L379 671V211H471V165H379V114Q379 73 379 66T385 54Q393 47 442 46H471V0H462ZM293 211V545L74 212L183 211H293Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E476-MJMAIN-31"></use><use xlink:href="#E476-MJMAIN-30" x="500" y="0"></use><g transform="translate(1000,392)"><use transform="scale(0.707)" xlink:href="#E476-MJMAIN-2212" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E476-MJMAIN-34" x="778" y="0"></use></g></g></svg></span><script type="math/tex">10^{-4}</script><span>。</span></p><p>&nbsp;</p><p><span>对于矩阵 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.807ex" height="2.11ex" viewBox="0 -806.1 778 908.7" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E288-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E288-MJMAIN-398" x="0" y="0"></use></g></svg></span><script type="math/tex">\Theta</script><span>,有 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="68.745ex" height="6.196ex" viewBox="0 -1610.3 29598.5 2667.7" role="img" focusable="false" style="vertical-align: -2.456ex;"><defs><path stroke-width="0" id="E477-MJMAIN-2202" d="M202 508Q179 508 169 520T158 547Q158 557 164 577T185 624T230 675T301 710L333 715H345Q378 715 384 714Q447 703 489 661T549 568T566 457Q566 362 519 240T402 53Q321 -22 223 -22Q123 -22 73 56Q42 102 42 148V159Q42 276 129 370T322 465Q383 465 414 434T455 367L458 378Q478 461 478 515Q478 603 437 639T344 676Q266 676 223 612Q264 606 264 572Q264 547 246 528T202 508ZM430 306Q430 372 401 400T333 428Q270 428 222 382Q197 354 183 323T150 221Q132 149 132 116Q132 21 232 21Q244 21 250 22Q327 35 374 112Q389 137 409 196T430 306Z"></path><path stroke-width="0" id="E477-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E477-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E477-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E477-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E477-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E477-MJMAIN-2248" d="M55 319Q55 360 72 393T114 444T163 472T205 482Q207 482 213 482T223 483Q262 483 296 468T393 413L443 381Q502 346 553 346Q609 346 649 375T694 454Q694 465 698 474T708 483Q722 483 722 452Q722 386 675 338T555 289Q514 289 468 310T388 357T308 404T224 426Q164 426 125 393T83 318Q81 289 69 289Q55 289 55 319ZM55 85Q55 126 72 159T114 210T163 238T205 248Q207 248 213 248T223 249Q262 249 296 234T393 179L443 147Q502 112 553 112Q609 112 649 141T694 220Q694 249 708 249T722 217Q722 153 675 104T555 55Q514 55 468 76T388 123T308 170T224 192Q164 192 125 159T83 84Q80 55 69 55Q55 55 55 85Z"></path><path stroke-width="0" id="E477-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E477-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E477-MJMAIN-2026" d="M78 60Q78 84 95 102T138 120Q162 120 180 104T199 61Q199 36 182 18T139 0T96 17T78 60ZM525 60Q525 84 542 102T585 120Q609 120 627 104T646 61Q646 36 629 18T586 0T543 17T525 60ZM972 60Q972 84 989 102T1032 120Q1056 120 1074 104T1093 61Q1093 36 1076 18T1033 0T990 17T972 60Z"></path><path stroke-width="0" id="E477-MJMAIN-2B" d="M56 237T56 250T70 270H369V420L370 570Q380 583 389 583Q402 583 409 568V270H707Q722 262 722 250T707 230H409V-68Q401 -82 391 -82H389H387Q375 -82 369 -68V230H70Q56 237 56 250Z"></path><path stroke-width="0" id="E477-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path><path stroke-width="0" id="E477-MJMATHI-6E" d="M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E477-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E477-MJMAIN-32" d="M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect stroke="none" width="1856" height="60" x="0" y="220"></rect><use xlink:href="#E477-MJMAIN-2202" x="644" y="676"></use><g transform="translate(60,-686)"><use xlink:href="#E477-MJMAIN-2202" x="0" y="0"></use><g transform="translate(567,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMATHI-6A" x="1100" y="-213"></use></g></g></g><use xlink:href="#E477-MJMATHI-4A" x="2096" y="0"></use><use xlink:href="#E477-MJMAIN-28" x="2729" y="0"></use><use xlink:href="#E477-MJMAIN-398" x="3118" y="0"></use><use xlink:href="#E477-MJMAIN-29" x="3896" y="0"></use><use xlink:href="#E477-MJMAIN-2248" x="4563" y="0"></use><g transform="translate(5618,0)"><g transform="translate(120,0)"><rect stroke="none" width="23739" height="60" x="0" y="220"></rect><g transform="translate(60,759)"><use xlink:href="#E477-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E477-MJMAIN-28" x="633" y="0"></use><g transform="translate(1022,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMAIN-31" x="1100" y="-213"></use></g><use xlink:href="#E477-MJMAIN-2C" x="2253" y="0"></use><use xlink:href="#E477-MJMAIN-2026" x="2698" y="0"></use><use xlink:href="#E477-MJMAIN-2C" x="4036" y="0"></use><g transform="translate(4481,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMATHI-6A" x="1100" y="-213"></use></g><use xlink:href="#E477-MJMAIN-2B" x="5873" y="0"></use><use xlink:href="#E477-MJMATHI-3F5" x="6873" y="0"></use><use xlink:href="#E477-MJMAIN-2C" x="7279" y="0"></use><use xlink:href="#E477-MJMAIN-2026" x="7723" y="0"></use><use xlink:href="#E477-MJMAIN-2C" x="9062" y="0"></use><g transform="translate(9507,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMATHI-6E" x="1100" y="-213"></use></g><use xlink:href="#E477-MJMAIN-29" x="10809" y="0"></use><use xlink:href="#E477-MJMAIN-2212" x="11420" y="0"></use><use xlink:href="#E477-MJMATHI-4A" x="12421" y="0"></use><use xlink:href="#E477-MJMAIN-28" x="13054" y="0"></use><g transform="translate(13443,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMAIN-31" x="1100" y="-213"></use></g><use xlink:href="#E477-MJMAIN-2C" x="14674" y="0"></use><use xlink:href="#E477-MJMAIN-2026" x="15119" y="0"></use><use xlink:href="#E477-MJMAIN-2C" x="16457" y="0"></use><g transform="translate(16902,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMATHI-6A" x="1100" y="-213"></use></g><use xlink:href="#E477-MJMAIN-2212" x="18294" y="0"></use><use xlink:href="#E477-MJMATHI-3F5" x="19294" y="0"></use><use xlink:href="#E477-MJMAIN-2C" x="19700" y="0"></use><use xlink:href="#E477-MJMAIN-2026" x="20145" y="0"></use><use xlink:href="#E477-MJMAIN-2C" x="21483" y="0"></use><g transform="translate(21928,0)"><use xlink:href="#E477-MJMAIN-398" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E477-MJMATHI-6E" x="1100" y="-213"></use></g><use xlink:href="#E477-MJMAIN-29" x="23230" y="0"></use></g><g transform="translate(11416,-686)"><use xlink:href="#E477-MJMAIN-32" x="0" y="0"></use><use xlink:href="#E477-MJMATHI-3F5" x="500" y="0"></use></g></g></g></g></svg></span><script type="math/tex">\dfrac{\partial}{\partial\Theta_j}J(\Theta) \approx \dfrac{J(\Theta_1, \dots, \Theta_j + \epsilon, \dots, \Theta_n) - J(\Theta_1, \dots, \Theta_j - \epsilon, \dots, \Theta_n)}{2\epsilon}</script></p><p><span>Octave/Matlab 代码:</span></p><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang="octave"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="octave"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 36px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 28px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>8</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -28px; width: 28px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">epsilon</span> = <span class="cm-number">1e-4</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">for</span> <span class="cm-variable">i</span> = <span class="cm-number">1</span>:<span class="cm-variable">n</span>,</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">thetaPlus</span> = <span class="cm-variable">theta</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">thetaPlus</span>(<span class="cm-variable">i</span>) <span class="cm-operator">+</span>= <span class="cm-variable">epsilon</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">thetaMinus</span> = <span class="cm-variable">theta</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">6</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">thetaMinus</span>(<span class="cm-variable">i</span>) <span class="cm-operator">-</span>= <span class="cm-variable">epsilon</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">7</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"> &nbsp;<span class="cm-variable">gradApprox</span>(<span class="cm-variable">i</span>) = (<span class="cm-variable">J</span>(<span class="cm-variable">thetaPlus</span>) <span class="cm-operator">-</span> <span class="cm-variable">J</span>(<span class="cm-variable">thetaMinus</span>))<span class="cm-operator">/</span>(<span class="cm-number">2</span><span class="cm-operator">*</span><span class="cm-variable">epsilon</span>);</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">8</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-keyword">end</span></span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 184px;"></div><div class="CodeMirror-gutters" style="height: 184px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 27px;"></div></div></div></div></pre><p><span>在得出 gradApprox 梯度向量后,将其同之前计算的偏导 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.923ex" height="1.877ex" viewBox="0 -755.9 828 808.1" role="img" focusable="false" style="vertical-align: -0.121ex;"><defs><path stroke-width="0" id="E478-MJMATHI-44" d="M287 628Q287 635 230 637Q207 637 200 638T193 647Q193 655 197 667T204 682Q206 683 403 683Q570 682 590 682T630 676Q702 659 752 597T803 431Q803 275 696 151T444 3L430 1L236 0H125H72Q48 0 41 2T33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM703 469Q703 507 692 537T666 584T629 613T590 629T555 636Q553 636 541 636T512 636T479 637H436Q392 637 386 627Q384 623 313 339T242 52Q242 48 253 48T330 47Q335 47 349 47T373 46Q499 46 581 128Q617 164 640 212T683 339T703 469Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E478-MJMATHI-44" x="0" y="0"></use></g></svg></span><script type="math/tex">D</script><span> 比较,如果相等或很接近,即说明算法没有问题。</span></p><p><span>在确认算法</span><strong><span>没有问题后</span></strong><span>(一般只需运行一次),由于数值估计的梯度检验效率很低,所以一定要</span><strong><span>禁用它</span></strong><span>。</span></p><h2><a name="96-随机初始化random-initialization" class="md-header-anchor"></a><span>9.6 随机初始化(Random Initialization)</span></h2><p><span>逻辑回归中,初始参数向量全为 0 没什么问题,在神经网络中,情况就不一样了。</span></p><p><span>初始权重如果全为 0,忆及 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="17.418ex" height="2.461ex" viewBox="0 -956.9 7499.4 1059.4" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E479-MJMATHI-7A" d="M347 338Q337 338 294 349T231 360Q211 360 197 356T174 346T162 335T155 324L153 320Q150 317 138 317Q117 317 117 325Q117 330 120 339Q133 378 163 406T229 440Q241 442 246 442Q271 442 291 425T329 392T367 375Q389 375 411 408T434 441Q435 442 449 442H462Q468 436 468 434Q468 430 463 420T449 399T432 377T418 358L411 349Q368 298 275 214T160 106L148 94L163 93Q185 93 227 82T290 71Q328 71 360 90T402 140Q406 149 409 151T424 153Q443 153 443 143Q443 138 442 134Q425 72 376 31T278 -11Q252 -11 232 6T193 40T155 57Q111 57 76 -3Q70 -11 59 -11H54H41Q35 -5 35 -2Q35 13 93 84Q132 129 225 214T340 322Q352 338 347 338Z"></path><path stroke-width="0" id="E479-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E479-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E479-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E479-MJMAIN-3D" d="M56 347Q56 360 70 367H707Q722 359 722 347Q722 336 708 328L390 327H72Q56 332 56 347ZM56 153Q56 168 72 173H708Q722 163 722 153Q722 140 707 133H70Q56 140 56 153Z"></path><path stroke-width="0" id="E479-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E479-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E479-MJMAIN-31" d="M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z"></path><path stroke-width="0" id="E479-MJMATHI-61" d="M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E479-MJMATHI-7A" x="0" y="0"></use><g transform="translate(468,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="687" y="0"></use></g><use xlink:href="#E479-MJMAIN-3D" x="1607" y="0"></use><g transform="translate(2663,0)"><use xlink:href="#E479-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-2212" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="1964" y="0"></use></g></g><g transform="translate(5205,0)"><use xlink:href="#E479-MJMATHI-61" x="0" y="0"></use><g transform="translate(529,362)"><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-2212" x="687" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-31" x="1465" y="0"></use><use transform="scale(0.707)" xlink:href="#E479-MJMAIN-29" x="1964" y="0"></use></g></g></g></svg></span><script type="math/tex">z^{(l)} = \Theta^{(l-1)}a^{(l-1)}</script><span>,则隐藏层除了偏置单元,都为 0,而每个单元求导的值也都一样,这就相当于是在不断</span><strong><span>重复计算同一结果</span></strong><span>,也就是算着算着,一堆特征在每一层都变成只有一个特征(虽然有很多单元,但值都相等),这样,神经网络的性能和效果都会大打折扣,故需要随机初始化初始权重。</span></p><p><span>随机初始化权重矩阵也为实现细节之一,用于打破对称性(Symmetry Breaking),使得 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.663ex" height="3.745ex" viewBox="0 -1107.7 5452.1 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E480-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E480-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E480-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E480-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E480-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E480-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E480-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E480-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E480-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E480-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path><path stroke-width="0" id="E480-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E480-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E480-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,521)"><use transform="scale(0.707)" xlink:href="#E480-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E480-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E480-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(778,-303)"><use transform="scale(0.707)" xlink:href="#E480-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E480-MJMATHI-6A" x="345" y="0"></use></g><use xlink:href="#E480-MJMAIN-2208" x="1916" y="0"></use><use xlink:href="#E480-MJMAIN-5B" x="2861" y="0"></use><use xlink:href="#E480-MJMAIN-2212" x="3139" y="0"></use><use xlink:href="#E480-MJMATHI-3F5" x="3917" y="0"></use><use xlink:href="#E480-MJMAIN-2C" x="4323" y="0"></use><use xlink:href="#E480-MJMATHI-3F5" x="4768" y="0"></use><use xlink:href="#E480-MJMAIN-5D" x="5174" y="0"></use></g></svg></span><script type="math/tex">\Theta^{(l)}_{ij} \in [-\epsilon,\epsilon]</script><span> 。</span></p><p><span>Octave/Matlab 代码:</span></p><p><span>当然,初始权重的波动也不能太大,一般限定在极小值 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.943ex" height="1.41ex" viewBox="0 -504.6 406 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E484-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E484-MJMATHI-3F5" x="0" y="0"></use></g></svg></span><script type="math/tex">\epsilon</script><span> 范围内,即 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="12.663ex" height="3.745ex" viewBox="0 -1107.7 5452.1 1612.3" role="img" focusable="false" style="vertical-align: -1.172ex;"><defs><path stroke-width="0" id="E482-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E482-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E482-MJMATHI-6C" d="M117 59Q117 26 142 26Q179 26 205 131Q211 151 215 152Q217 153 225 153H229Q238 153 241 153T246 151T248 144Q247 138 245 128T234 90T214 43T183 6T137 -11Q101 -11 70 11T38 85Q38 97 39 102L104 360Q167 615 167 623Q167 626 166 628T162 632T157 634T149 635T141 636T132 637T122 637Q112 637 109 637T101 638T95 641T94 647Q94 649 96 661Q101 680 107 682T179 688Q194 689 213 690T243 693T254 694Q266 694 266 686Q266 675 193 386T118 83Q118 81 118 75T117 65V59Z"></path><path stroke-width="0" id="E482-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path><path stroke-width="0" id="E482-MJMATHI-69" d="M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z"></path><path stroke-width="0" id="E482-MJMAIN-2C" d="M78 35T78 60T94 103T137 121Q165 121 187 96T210 8Q210 -27 201 -60T180 -117T154 -158T130 -185T117 -194Q113 -194 104 -185T95 -172Q95 -168 106 -156T131 -126T157 -76T173 -3V9L172 8Q170 7 167 6T161 3T152 1T140 0Q113 0 96 17Z"></path><path stroke-width="0" id="E482-MJMATHI-6A" d="M297 596Q297 627 318 644T361 661Q378 661 389 651T403 623Q403 595 384 576T340 557Q322 557 310 567T297 596ZM288 376Q288 405 262 405Q240 405 220 393T185 362T161 325T144 293L137 279Q135 278 121 278H107Q101 284 101 286T105 299Q126 348 164 391T252 441Q253 441 260 441T272 442Q296 441 316 432Q341 418 354 401T367 348V332L318 133Q267 -67 264 -75Q246 -125 194 -164T75 -204Q25 -204 7 -183T-12 -137Q-12 -110 7 -91T53 -71Q70 -71 82 -81T95 -112Q95 -148 63 -167Q69 -168 77 -168Q111 -168 139 -140T182 -74L193 -32Q204 11 219 72T251 197T278 308T289 365Q289 372 288 376Z"></path><path stroke-width="0" id="E482-MJMAIN-2208" d="M84 250Q84 372 166 450T360 539Q361 539 377 539T419 540T469 540H568Q583 532 583 520Q583 511 570 501L466 500Q355 499 329 494Q280 482 242 458T183 409T147 354T129 306T124 272V270H568Q583 262 583 250T568 230H124V228Q124 207 134 177T167 112T231 48T328 7Q355 1 466 0H570Q583 -10 583 -20Q583 -32 568 -40H471Q464 -40 446 -40T417 -41Q262 -41 172 45Q84 127 84 250Z"></path><path stroke-width="0" id="E482-MJMAIN-5B" d="M118 -250V750H255V710H158V-210H255V-250H118Z"></path><path stroke-width="0" id="E482-MJMAIN-2212" d="M84 237T84 250T98 270H679Q694 262 694 250T679 230H98Q84 237 84 250Z"></path><path stroke-width="0" id="E482-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path><path stroke-width="0" id="E482-MJMAIN-5D" d="M22 710V750H159V-250H22V-210H119V710H22Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E482-MJMAIN-398" x="0" y="0"></use><g transform="translate(778,521)"><use transform="scale(0.707)" xlink:href="#E482-MJMAIN-28" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E482-MJMATHI-6C" x="389" y="0"></use><use transform="scale(0.707)" xlink:href="#E482-MJMAIN-29" x="687" y="0"></use></g><g transform="translate(778,-303)"><use transform="scale(0.707)" xlink:href="#E482-MJMATHI-69" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E482-MJMAIN-2C" x="345" y="0"></use><use transform="scale(0.707)" xlink:href="#E482-MJMATHI-6A" x="623" y="0"></use></g><use xlink:href="#E482-MJMAIN-2208" x="1916" y="0"></use><use xlink:href="#E482-MJMAIN-5B" x="2861" y="0"></use><use xlink:href="#E482-MJMAIN-2212" x="3139" y="0"></use><use xlink:href="#E482-MJMATHI-3F5" x="3917" y="0"></use><use xlink:href="#E482-MJMAIN-2C" x="4323" y="0"></use><use xlink:href="#E482-MJMATHI-3F5" x="4768" y="0"></use><use xlink:href="#E482-MJMAIN-5D" x="5174" y="0"></use></g></svg></span><script type="math/tex">\Theta^{(l)}_{i,j} \in [-\epsilon, \epsilon]</script><span>。</span></p><pre spellcheck="false" class="md-fences md-end-block md-fences-with-lineno ty-contain-cm modeLoaded" lang="octave"><div class="CodeMirror cm-s-inner CodeMirror-wrap" lang="octave"><div style="overflow: hidden; position: relative; width: 3px; height: 0px; top: 0px; left: 36px;"><textarea autocorrect="off" autocapitalize="off" spellcheck="false" tabindex="0" style="position: absolute; bottom: -1em; padding: 0px; width: 1000px; height: 1em; outline: none;"></textarea></div><div class="CodeMirror-scrollbar-filler" cm-not-content="true"></div><div class="CodeMirror-gutter-filler" cm-not-content="true"></div><div class="CodeMirror-scroll" tabindex="-1"><div class="CodeMirror-sizer" style="margin-left: 28px; margin-bottom: 0px; border-right-width: 0px; padding-right: 0px; padding-bottom: 0px;"><div style="position: relative; top: 0px;"><div class="CodeMirror-lines" role="presentation"><div role="presentation" style="position: relative; outline: none;"><div class="CodeMirror-measure"><pre><span>xxxxxxxxxx</span></pre><div class="CodeMirror-linenumber CodeMirror-gutter-elt"><div>5</div></div></div><div class="CodeMirror-measure"></div><div style="position: relative; z-index: 1;"></div><div class="CodeMirror-code" role="presentation" style=""><div class="CodeMirror-activeline" style="position: relative;"><div class="CodeMirror-activeline-background CodeMirror-linebackground"></div><div class="CodeMirror-gutter-background CodeMirror-activeline-gutter" style="left: -28px; width: 28px;"></div><div class="CodeMirror-gutter-wrapper CodeMirror-activeline-gutter" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">1</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">If</span> <span class="cm-variable">the</span> <span class="cm-variable">dimensions</span> <span class="cm-variable">of</span> <span class="cm-variable">Theta1</span> <span class="cm-variable">is</span> <span class="cm-number">10</span><span class="cm-variable">x11</span>, <span class="cm-variable">Theta2</span> <span class="cm-variable">is</span> <span class="cm-number">10</span><span class="cm-variable">x11</span> <span class="cm-variable">and</span> <span class="cm-variable">Theta3</span> <span class="cm-variable">is</span> <span class="cm-number">1</span><span class="cm-variable">x11</span><span class="cm-error">.</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">2</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span cm-text="">​</span></span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">3</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta1</span> = <span class="cm-builtin">rand</span>(<span class="cm-number">10</span>,<span class="cm-number">11</span>) <span class="cm-operator">*</span> (<span class="cm-number">2</span> <span class="cm-operator">*</span> <span class="cm-variable">INIT_EPSILON</span>) <span class="cm-operator">-</span> <span class="cm-variable">INIT_EPSILON</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt" style="left: 0px; width: 19px;">4</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta2</span> = <span class="cm-builtin">rand</span>(<span class="cm-number">10</span>,<span class="cm-number">11</span>) <span class="cm-operator">*</span> (<span class="cm-number">2</span> <span class="cm-operator">*</span> <span class="cm-variable">INIT_EPSILON</span>) <span class="cm-operator">-</span> <span class="cm-variable">INIT_EPSILON</span>;</span></pre></div><div style="position: relative;"><div class="CodeMirror-gutter-wrapper" style="left: -28px;"><div class="CodeMirror-linenumber CodeMirror-gutter-elt CodeMirror-linenumber-show" style="left: 0px; width: 19px;">5</div></div><pre class=" CodeMirror-line " role="presentation"><span role="presentation" style="padding-right: 0.1px;"><span class="cm-variable">Theta3</span> = <span class="cm-builtin">rand</span>(<span class="cm-number">1</span>,<span class="cm-number">11</span>) <span class="cm-operator">*</span> (<span class="cm-number">2</span> <span class="cm-operator">*</span> <span class="cm-variable">INIT_EPSILON</span>) <span class="cm-operator">-</span> <span class="cm-variable">INIT_EPSILON</span>;</span></pre></div></div></div></div></div></div><div style="position: absolute; height: 0px; width: 1px; border-bottom: 0px solid transparent; top: 115px;"></div><div class="CodeMirror-gutters" style="height: 115px;"><div class="CodeMirror-gutter CodeMirror-linenumbers" style="width: 27px;"></div></div></div></div></pre><blockquote><p><code>rand(m,n)</code><span>: 返回一个在区间 (0,1) 内均匀分布的随机矩阵。</span></p><p><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.943ex" height="1.41ex" viewBox="0 -504.6 406 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E484-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E484-MJMATHI-3F5" x="0" y="0"></use></g></svg></span><script type="math/tex">\epsilon</script><span>: 和梯度下降中的 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="0.943ex" height="1.41ex" viewBox="0 -504.6 406 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E484-MJMATHI-3F5" d="M227 -11Q149 -11 95 41T40 174Q40 262 87 322Q121 367 173 396T287 430Q289 431 329 431H367Q382 426 382 411Q382 385 341 385H325H312Q191 385 154 277L150 265H327Q340 256 340 246Q340 228 320 219H138V217Q128 187 128 143Q128 77 160 52T231 26Q258 26 284 36T326 57T343 68Q350 68 354 58T358 39Q358 36 357 35Q354 31 337 21T289 0T227 -11Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E484-MJMATHI-3F5" x="0" y="0"></use></g></svg></span><script type="math/tex">\epsilon</script><span> 没有联系,这里只是一个任意实数,给定了权重矩阵初始化值的范围。</span></p></blockquote><h2><a name="97-综合起来putting-it-together" class="md-header-anchor"></a><span>9.7 综合起来(Putting It Together)</span></h2><p><span>一般来说,应用神经网络有如下步骤:</span></p><ol start='' ><li><p><span>神经网络的建模(后续补充)</span></p><ul><li><span>选取特征,确定特征向量 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="1.329ex" height="1.41ex" viewBox="0 -504.6 572 607.1" role="img" focusable="false" style="vertical-align: -0.238ex;"><defs><path stroke-width="0" id="E17-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E17-MJMATHI-78" x="0" y="0"></use></g></svg></span><script type="math/tex">x</script><span> 的维度,即输入单元的数量。</span></li><li><span>鉴别分类,确定预测向量 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.983ex" height="2.577ex" viewBox="0 -806.1 2576.1 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E334-MJMATHI-68" d="M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z"></path><path stroke-width="0" id="E334-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E334-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E334-MJMATHI-78" d="M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z"></path><path stroke-width="0" id="E334-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E334-MJMATHI-68" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="#E334-MJMAIN-398" x="814" y="-218"></use><use xlink:href="#E334-MJMAIN-28" x="1226" y="0"></use><use xlink:href="#E334-MJMATHI-78" x="1615" y="0"></use><use xlink:href="#E334-MJMAIN-29" x="2187" y="0"></use></g></svg></span><script type="math/tex">h_\Theta(x)</script><span> 的维度,即输出单元的数量。</span></li><li><span>确定隐藏层有几层以及每层隐藏层有多少个隐藏单元。</span></li></ul><blockquote><p><span>默认情况下,隐藏层至少要有一层,也可以有多层,层数越多一般意味着效果越好,计算量越大。</span></p></blockquote></li><li><p><span>训练神经网络</span></p><ol start='' ><li><p><span>随机初始化初始权重矩阵</span></p></li><li><p><span>应用前向传播算法计算初始预测</span></p></li><li><p><span>计算代价函数 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 的值</span></p></li><li><p><span>应用后向传播宣发计算 </span><span class="MathJax_SVG" tabindex="-1" style="font-size: 100%; display: inline-block;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="5.084ex" height="2.577ex" viewBox="0 -806.1 2189 1109.7" role="img" focusable="false" style="vertical-align: -0.705ex;"><defs><path stroke-width="0" id="E486-MJMATHI-4A" d="M447 625Q447 637 354 637H329Q323 642 323 645T325 664Q329 677 335 683H352Q393 681 498 681Q541 681 568 681T605 682T619 682Q633 682 633 672Q633 670 630 658Q626 642 623 640T604 637Q552 637 545 623Q541 610 483 376Q420 128 419 127Q397 64 333 21T195 -22Q137 -22 97 8T57 88Q57 130 80 152T132 174Q177 174 182 130Q182 98 164 80T123 56Q115 54 115 53T122 44Q148 15 197 15Q235 15 271 47T324 130Q328 142 387 380T447 625Z"></path><path stroke-width="0" id="E486-MJMAIN-28" d="M94 250Q94 319 104 381T127 488T164 576T202 643T244 695T277 729T302 750H315H319Q333 750 333 741Q333 738 316 720T275 667T226 581T184 443T167 250T184 58T225 -81T274 -167T316 -220T333 -241Q333 -250 318 -250H315H302L274 -226Q180 -141 137 -14T94 250Z"></path><path stroke-width="0" id="E486-MJMAIN-398" d="M56 340Q56 423 86 494T164 610T270 680T388 705Q521 705 621 601T722 341Q722 260 693 191T617 75T510 4T388 -22T267 3T160 74T85 189T56 340ZM610 339Q610 428 590 495T535 598T463 651T384 668Q332 668 289 638T221 566Q168 485 168 339Q168 274 176 235Q189 158 228 105T324 28Q356 16 388 16Q415 16 442 24T501 54T555 111T594 205T610 339ZM223 263V422H263V388H514V422H554V263H514V297H263V263H223Z"></path><path stroke-width="0" id="E486-MJMAIN-29" d="M60 749L64 750Q69 750 74 750H86L114 726Q208 641 251 514T294 250Q294 182 284 119T261 12T224 -76T186 -143T145 -194T113 -227T90 -246Q87 -249 86 -250H74Q66 -250 63 -250T58 -247T55 -238Q56 -237 66 -225Q221 -64 221 250T66 725Q56 737 55 738Q55 746 60 749Z"></path></defs><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="#E486-MJMATHI-4A" x="0" y="0"></use><use xlink:href="#E486-MJMAIN-28" x="633" y="0"></use><use xlink:href="#E486-MJMAIN-398" x="1022" y="0"></use><use xlink:href="#E486-MJMAIN-29" x="1800" y="0"></use></g></svg></span><script type="math/tex">J(\Theta)</script><span> 的偏导数</span></p></li><li><p><span>使用梯度检验检查算法的正确性,别忘了用完就禁用它</span></p></li><li><p><span>丢给最优化函数最小化代价函数</span></p><blockquote><p><span>由于神经网络的代价函数非凸,最优化时不一定会收敛在全局最小值处,高级最优化函数能确保收敛在某个</span><strong><span>局部</span></strong><span>最小值处。</span></p></blockquote></li></ol></li></ol><p>&nbsp;</p><h2><a name="98-自主驾驶autonomous-driving" class="md-header-anchor"></a><span>9.8 自主驾驶(Autonomous Driving)</span></h2><p><img src="images/20180125_195029.png" referrerpolicy="no-referrer"></p><p><span>描述了神经网络在于</span><a href='https://www.coursera.org/learn/machine-learning/lecture/zYS8T/autonomous-driving'><span>自动驾驶</span></a><span>领域的应用实例,用于打鸡血,笔记略。</span></p></div>
</body>
</html>
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/zhang-wq/ML-AndrewNg-Notes.git
git@gitee.com:zhang-wq/ML-AndrewNg-Notes.git
zhang-wq
ML-AndrewNg-Notes
ML-AndrewNg-Notes
master

搜索帮助