代码拉取完成,页面将自动刷新
from models.TENER import TENER
from fastNLP.embeddings import CNNCharEmbedding
from fastNLP import cache_results
from fastNLP import Trainer, GradientClipCallback, WarmupCallback
from torch import optim
from fastNLP import SpanFPreRecMetric, BucketSampler
from fastNLP.io.pipe.conll import OntoNotesNERPipe
from fastNLP.embeddings import StaticEmbedding, StackEmbedding, LSTMCharEmbedding
from modules.TransformerEmbedding import TransformerCharEmbed
from modules.pipe import Conll2003NERPipe
import argparse
from modules.callbacks import EvaluateCallback
device = 0
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='en-ontonotes', choices=['conll2003', 'en-ontonotes'])
args = parser.parse_args()
dataset = args.dataset
if dataset == 'conll2003':
n_heads = 14
head_dims = 128
num_layers = 2
lr = 0.0009
attn_type = 'adatrans'
char_type = 'cnn'
elif dataset == 'en-ontonotes':
n_heads = 8
head_dims = 96
num_layers = 2
lr = 0.0007
attn_type = 'adatrans'
char_type = 'adatrans'
pos_embed = None
#########hyper
batch_size = 16
warmup_steps = 0.01
after_norm = 1
model_type = 'transformer'
normalize_embed = True
#########hyper
dropout=0.15
fc_dropout=0.4
encoding_type = 'bioes'
name = 'caches/{}_{}_{}_{}_{}.pkl'.format(dataset, model_type, encoding_type, char_type, normalize_embed)
d_model = n_heads * head_dims
dim_feedforward = int(2 * d_model)
@cache_results(name, _refresh=False)
def load_data():
# 替换路径
if dataset == 'conll2003':
# conll2003的lr不能超过0.002
paths = {'test': "../data/conll2003/test.txt",
'train': "../data/conll2003/train.txt",
'dev': "../data/conll2003/dev.txt"}
data = Conll2003NERPipe(encoding_type=encoding_type).process_from_file(paths)
elif dataset == 'en-ontonotes':
# 会使用这个文件夹下的train.txt, test.txt, dev.txt等文件
paths = '../data/en-ontonotes/english'
data = OntoNotesNERPipe(encoding_type=encoding_type).process_from_file(paths)
char_embed = None
if char_type == 'cnn':
char_embed = CNNCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, filter_nums=[30],
kernel_sizes=[3], word_dropout=0, dropout=0.3, pool_method='max'
, include_word_start_end=False, min_char_freq=2)
elif char_type in ['adatrans', 'naive']:
char_embed = TransformerCharEmbed(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, pool_method='max', activation='relu',
min_char_freq=2, requires_grad=True, include_word_start_end=False,
char_attn_type=char_type, char_n_head=3, char_dim_ffn=60, char_scale=char_type=='naive',
char_dropout=0.15, char_after_norm=True)
elif char_type == 'lstm':
char_embed = LSTMCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, hidden_size=100, pool_method='max', activation='relu',
min_char_freq=2, bidirectional=True, requires_grad=True, include_word_start_end=False)
word_embed = StaticEmbedding(vocab=data.get_vocab('words'),
model_dir_or_name='en-glove-6b-100d',
requires_grad=True, lower=True, word_dropout=0, dropout=0.5,
only_norm_found_vector=normalize_embed)
if char_embed is not None:
embed = StackEmbedding([word_embed, char_embed], dropout=0, word_dropout=0.02)
else:
word_embed.word_drop = 0.02
embed = word_embed
data.rename_field('words', 'chars')
return data, embed
data_bundle, embed = load_data()
print(data_bundle)
model = TENER(tag_vocab=data_bundle.get_vocab('target'), embed=embed, num_layers=num_layers,
d_model=d_model, n_head=n_heads,
feedforward_dim=dim_feedforward, dropout=dropout,
after_norm=after_norm, attn_type=attn_type,
bi_embed=None,
fc_dropout=fc_dropout,
pos_embed=pos_embed,
scale=attn_type=='transformer')
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
callbacks = []
clip_callback = GradientClipCallback(clip_type='value', clip_value=5)
evaluate_callback = EvaluateCallback(data_bundle.get_dataset('test'))
if warmup_steps>0:
warmup_callback = WarmupCallback(warmup_steps, schedule='linear')
callbacks.append(warmup_callback)
callbacks.extend([clip_callback, evaluate_callback])
trainer = Trainer(data_bundle.get_dataset('train'), model, optimizer, batch_size=batch_size, sampler=BucketSampler(),
num_workers=2, n_epochs=100, dev_data=data_bundle.get_dataset('dev'),
metrics=SpanFPreRecMetric(tag_vocab=data_bundle.get_vocab('target'), encoding_type=encoding_type),
dev_batch_size=batch_size*5, callbacks=callbacks, device=device, test_use_tqdm=False,
use_tqdm=True, print_every=300, save_path=None)
trainer.train(load_best_model=False)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。