代码拉取完成,页面将自动刷新
from models.TENER import TENER
from fastNLP.embeddings import CNNCharEmbedding
from fastNLP import cache_results
from fastNLP import Trainer, GradientClipCallback, WarmupCallback
from torch import optim
from fastNLP import SpanFPreRecMetric, BucketSampler
from fastNLP.io.pipe.conll import OntoNotesNERPipe
from fastNLP.embeddings import StaticEmbedding, StackEmbedding, LSTMCharEmbedding, ElmoEmbedding
from modules.TransformerEmbedding import TransformerCharEmbed
from modules.pipe import Conll2003NERPipe
from modules.callbacks import EvaluateCallback
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='en-ontonotes', choices=['conll2003', 'en-ontonotes'])
args = parser.parse_args()
dataset = args.dataset
if dataset == 'en-ontonotes':
n_heads = 10
head_dims = 96
num_layers = 2
lr = 0.0009
attn_type = 'adatrans'
optim_type = 'sgd'
trans_dropout = 0.15
batch_size = 16
elif dataset == 'conll2003':
n_heads = 12
head_dims = 128
num_layers = 2
lr = 0.0001
attn_type = 'adatrans'
optim_type = 'adam'
trans_dropout = 0.45 # 有可能是0.4
batch_size = 32
else:
raise RuntimeError("Only support conll2003, en-ontonotes")
char_type = 'adatrans'
pos_embed = None
model_type = 'elmo'
warmup_steps = 0.01
after_norm = 1
fc_dropout=0.4
normalize_embed = True
encoding_type = 'bioes'
name = 'caches/elmo_{}_{}_{}_{}_{}.pkl'.format(dataset, model_type, encoding_type, char_type, normalize_embed)
d_model = n_heads * head_dims
dim_feedforward = int(2 * d_model)
device = 0
# scale为1时,同时character和模型的scale都是1
@cache_results(name, _refresh=False)
def load_data():
# 替换路径
if dataset == 'conll2003':
# conll2003的lr不能超过0.002
paths = {'test': "../data/conll2003/test.txt",
'train': "../data/conll2003/train.txt",
'dev': "../data/conll2003/dev.txt"}
data = Conll2003NERPipe(encoding_type=encoding_type).process_from_file(paths)
elif dataset == 'en-ontonotes':
paths = '../data/en-ontonotes/english'
data = OntoNotesNERPipe(encoding_type=encoding_type).process_from_file(paths)
char_embed = None
if char_type == 'cnn':
char_embed = CNNCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, filter_nums=[30],
kernel_sizes=[3], word_dropout=0, dropout=0.3, pool_method='max'
, include_word_start_end=False, min_char_freq=2)
elif char_type in ['adatrans', 'naive']:
char_embed = TransformerCharEmbed(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, pool_method='max', activation='relu',
min_char_freq=2, requires_grad=True, include_word_start_end=False,
char_attn_type=char_type, char_n_head=3, char_dim_ffn=60, char_scale=char_type=='naive',
char_dropout=0.15, char_after_norm=True)
elif char_type == 'lstm':
char_embed = LSTMCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, hidden_size=100, pool_method='max', activation='relu',
min_char_freq=2, bidirectional=True, requires_grad=True, include_word_start_end=False)
word_embed = StaticEmbedding(vocab=data.get_vocab('words'),
model_dir_or_name='en-glove-6b-100d',
requires_grad=True, lower=True, word_dropout=0, dropout=0.5,
only_norm_found_vector=normalize_embed)
data.rename_field('words', 'chars')
embed = ElmoEmbedding(vocab=data.get_vocab('chars'), model_dir_or_name='en-original', layers='mix', requires_grad=False,
word_dropout=0.0, dropout=0.5, cache_word_reprs=False)
embed.set_mix_weights_requires_grad()
embed = StackEmbedding([embed, word_embed, char_embed], dropout=0, word_dropout=0.02)
return data, embed
data_bundle, embed = load_data()
print(data_bundle)
model = TENER(tag_vocab=data_bundle.get_vocab('target'), embed=embed, num_layers=num_layers,
d_model=d_model, n_head=n_heads,
feedforward_dim=dim_feedforward, dropout=trans_dropout,
after_norm=after_norm, attn_type=attn_type,
bi_embed=None,
fc_dropout=fc_dropout,
pos_embed=pos_embed,
scale=attn_type=='naive')
if optim_type == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
else:
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.99))
callbacks = []
clip_callback = GradientClipCallback(clip_type='value', clip_value=5)
evaluate_callback = EvaluateCallback(data_bundle.get_dataset('test'))
if warmup_steps>0:
warmup_callback = WarmupCallback(warmup_steps, schedule='linear')
callbacks.append(warmup_callback)
callbacks.extend([clip_callback, evaluate_callback])
trainer = Trainer(data_bundle.get_dataset('train'), model, optimizer, batch_size=batch_size, sampler=BucketSampler(),
num_workers=0, n_epochs=100, dev_data=data_bundle.get_dataset('dev'),
metrics=SpanFPreRecMetric(tag_vocab=data_bundle.get_vocab('target'), encoding_type=encoding_type),
dev_batch_size=batch_size, callbacks=callbacks, device=device, test_use_tqdm=False,
use_tqdm=True, print_every=300, save_path=None)
trainer.train(load_best_model=False)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。