1 Star 0 Fork 2

张文涛/TENER

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
train_elmo_en.py 5.54 KB
一键复制 编辑 原始数据 按行查看 历史
张文涛 提交于 2021-01-18 22:28 . Initial commit
from models.TENER import TENER
from fastNLP.embeddings import CNNCharEmbedding
from fastNLP import cache_results
from fastNLP import Trainer, GradientClipCallback, WarmupCallback
from torch import optim
from fastNLP import SpanFPreRecMetric, BucketSampler
from fastNLP.io.pipe.conll import OntoNotesNERPipe
from fastNLP.embeddings import StaticEmbedding, StackEmbedding, LSTMCharEmbedding, ElmoEmbedding
from modules.TransformerEmbedding import TransformerCharEmbed
from modules.pipe import Conll2003NERPipe
from modules.callbacks import EvaluateCallback
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='en-ontonotes', choices=['conll2003', 'en-ontonotes'])
args = parser.parse_args()
dataset = args.dataset
if dataset == 'en-ontonotes':
n_heads = 10
head_dims = 96
num_layers = 2
lr = 0.0009
attn_type = 'adatrans'
optim_type = 'sgd'
trans_dropout = 0.15
batch_size = 16
elif dataset == 'conll2003':
n_heads = 12
head_dims = 128
num_layers = 2
lr = 0.0001
attn_type = 'adatrans'
optim_type = 'adam'
trans_dropout = 0.45 # 有可能是0.4
batch_size = 32
else:
raise RuntimeError("Only support conll2003, en-ontonotes")
char_type = 'adatrans'
pos_embed = None
model_type = 'elmo'
warmup_steps = 0.01
after_norm = 1
fc_dropout=0.4
normalize_embed = True
encoding_type = 'bioes'
name = 'caches/elmo_{}_{}_{}_{}_{}.pkl'.format(dataset, model_type, encoding_type, char_type, normalize_embed)
d_model = n_heads * head_dims
dim_feedforward = int(2 * d_model)
device = 0
# scale为1时,同时character和模型的scale都是1
@cache_results(name, _refresh=False)
def load_data():
# 替换路径
if dataset == 'conll2003':
# conll2003的lr不能超过0.002
paths = {'test': "../data/conll2003/test.txt",
'train': "../data/conll2003/train.txt",
'dev': "../data/conll2003/dev.txt"}
data = Conll2003NERPipe(encoding_type=encoding_type).process_from_file(paths)
elif dataset == 'en-ontonotes':
paths = '../data/en-ontonotes/english'
data = OntoNotesNERPipe(encoding_type=encoding_type).process_from_file(paths)
char_embed = None
if char_type == 'cnn':
char_embed = CNNCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, filter_nums=[30],
kernel_sizes=[3], word_dropout=0, dropout=0.3, pool_method='max'
, include_word_start_end=False, min_char_freq=2)
elif char_type in ['adatrans', 'naive']:
char_embed = TransformerCharEmbed(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, pool_method='max', activation='relu',
min_char_freq=2, requires_grad=True, include_word_start_end=False,
char_attn_type=char_type, char_n_head=3, char_dim_ffn=60, char_scale=char_type=='naive',
char_dropout=0.15, char_after_norm=True)
elif char_type == 'lstm':
char_embed = LSTMCharEmbedding(vocab=data.get_vocab('words'), embed_size=30, char_emb_size=30, word_dropout=0,
dropout=0.3, hidden_size=100, pool_method='max', activation='relu',
min_char_freq=2, bidirectional=True, requires_grad=True, include_word_start_end=False)
word_embed = StaticEmbedding(vocab=data.get_vocab('words'),
model_dir_or_name='en-glove-6b-100d',
requires_grad=True, lower=True, word_dropout=0, dropout=0.5,
only_norm_found_vector=normalize_embed)
data.rename_field('words', 'chars')
embed = ElmoEmbedding(vocab=data.get_vocab('chars'), model_dir_or_name='en-original', layers='mix', requires_grad=False,
word_dropout=0.0, dropout=0.5, cache_word_reprs=False)
embed.set_mix_weights_requires_grad()
embed = StackEmbedding([embed, word_embed, char_embed], dropout=0, word_dropout=0.02)
return data, embed
data_bundle, embed = load_data()
print(data_bundle)
model = TENER(tag_vocab=data_bundle.get_vocab('target'), embed=embed, num_layers=num_layers,
d_model=d_model, n_head=n_heads,
feedforward_dim=dim_feedforward, dropout=trans_dropout,
after_norm=after_norm, attn_type=attn_type,
bi_embed=None,
fc_dropout=fc_dropout,
pos_embed=pos_embed,
scale=attn_type=='naive')
if optim_type == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9)
else:
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(0.9, 0.99))
callbacks = []
clip_callback = GradientClipCallback(clip_type='value', clip_value=5)
evaluate_callback = EvaluateCallback(data_bundle.get_dataset('test'))
if warmup_steps>0:
warmup_callback = WarmupCallback(warmup_steps, schedule='linear')
callbacks.append(warmup_callback)
callbacks.extend([clip_callback, evaluate_callback])
trainer = Trainer(data_bundle.get_dataset('train'), model, optimizer, batch_size=batch_size, sampler=BucketSampler(),
num_workers=0, n_epochs=100, dev_data=data_bundle.get_dataset('dev'),
metrics=SpanFPreRecMetric(tag_vocab=data_bundle.get_vocab('target'), encoding_type=encoding_type),
dev_batch_size=batch_size, callbacks=callbacks, device=device, test_use_tqdm=False,
use_tqdm=True, print_every=300, save_path=None)
trainer.train(load_best_model=False)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/zhang-wentao-1996/TENER.git
git@gitee.com:zhang-wentao-1996/TENER.git
zhang-wentao-1996
TENER
TENER
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385