1 Star 0 Fork 44

yuyangup/Gradio-YOLOv8-Det

forked from CV_Lab/Gradio-YOLOv8-Det 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
gradio_yolov8_det_v03.py 16.60 KB
一键复制 编辑 原始数据 按行查看 历史
代码阿尔法 提交于 2023-01-29 10:55 . v03 update
# Gradio YOLOv8 Det v0.3
# 创建人:曾逸夫
# 创建时间:2023-01-26
import argparse
import csv
import os
import sys
from ultralytics import YOLO
# pip_source = "https://pypi.tuna.tsinghua.edu.cn/simple some-package"
# os.system(f"pip install pip --upgrade -i {pip_source}")
# os.system(f"pip install gradio --upgrade -i {pip_source}")
# os.system(f"pip install ultralytics --upgrade -i {pip_source}")
csv.field_size_limit(sys.maxsize)
import random
from collections import Counter
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
from matplotlib import font_manager
ROOT_PATH = sys.path[0] # 项目根目录
# --------------------- 字体库 ---------------------
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径
# 宋体
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
# 新罗马字体
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
ROOT_PATH = sys.path[0] # 根目录
# Gradio YOLOv8 Det版本
GYD_VERSION = "Gradio YOLOv8 Det v0.3"
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv8 Det v0.3")
parser.add_argument("--model_type", "-mt", default="online", type=str, help="model type")
parser.add_argument("--source", "-src", default="upload", type=str, help="image input source")
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name")
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_zh.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
parser.add_argument(
"--is_login",
"-isl",
action="store_true",
default=False,
help="is login",
)
parser.add_argument('--usr_pwd',
"-up",
nargs='+',
type=str,
default=["admin", "admin"],
help="user & password for login")
parser.add_argument(
"--is_share",
"-is",
action="store_true",
default=False,
help="is login",
)
parser.add_argument("--server_port", "-sp", default=7861, type=int, help="server port")
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
# 检查网络连接
def check_online():
# 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
return True
except OSError:
return False
# 模型加载
def model_loading(img_path, conf, iou, infer_size, yolo_model="yolov8n.pt"):
model = YOLO(yolo_model)
results = model(source=img_path, imgsz=infer_size, conf=conf, iou=iou)
results = list(results)[0]
return results
# 标签和边界框颜色设置
def color_set(cls_num):
color_list = []
for i in range(cls_num):
color = tuple(np.random.choice(range(256), size=3))
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
color_list.append(color)
return color_list
# 随机生成浅色系或者深色系
def random_color(cls_num, is_light=True):
color_list = []
for i in range(cls_num):
color = (
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
)
color_list.append(color)
return color_list
# 检测绘制
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list):
img_pil = ImageDraw.Draw(img)
id = 0
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l):
img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框
countdown_msg = f"{id}-{label} {score:.2f}"
text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸
# 标签背景
img_pil.rectangle(
(xmin, ymin, xmin + text_w, ymin + text_h),
fill=color_list[cls_index],
outline=color_list[cls_index],
)
# 标签
img_pil.multiline_text(
(xmin, ymin),
countdown_msg,
fill=(0, 0, 0),
font=textFont,
align="center",
)
id += 1
return img
# 绘制多边形
def polygon_drawing(img_mask, canvas, color_seg):
# ------- RGB转BGR -------
color_seg = list(color_seg)
color_seg[0], color_seg[2] = color_seg[2], color_seg[0]
color_seg = tuple(color_seg)
# 定义多边形的顶点
pts = np.array(img_mask, dtype=np.int32)
# 多边形绘制
cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1)
# 输出分割结果
def seg_output(img_path, seg_mask_list, color_list, cls_list):
img = cv2.imread(img_path)
img_c = img.copy()
w, h = img.shape[1], img.shape[0]
# 获取分割坐标
for seg_mask, cls_index in zip(seg_mask_list, cls_list):
img_mask = []
for i in range(len(seg_mask)):
img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h])
polygon_drawing(img_mask, img_c, color_list[int(cls_index)]) # 绘制分割图形
img_mask_merge = cv2.addWeighted(img, 0.3, img_c, 0.7, 0) # 合并图像
return img_mask_merge
# YOLOv5图片检测函数
def yolo_det_img(img_path, model_name, infer_size, conf, iou):
global model, model_name_tmp, device_tmp
s_obj, m_obj, l_obj = 0, 0, 0
area_obj_all = [] # 目标面积
score_det_stat = [] # 置信度统计
bbox_det_stat = [] # 边界框统计
cls_det_stat = [] # 类别数量统计
cls_index_det_stat = [] # 类别索引统计
# 模型加载
predict_results = model_loading(img_path, conf, iou, infer_size, yolo_model=f"{model_name}.pt")
# 检测参数
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
cls_list = predict_results.boxes.cls.cpu().numpy().tolist()
# 颜色列表
color_list = random_color(len(model_cls_name_cp), True)
# 图像分割
if (model_name[-3:] == "seg"):
masks_list = predict_results.masks.segments
img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list)
img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGBA))
else:
img = Image.open(img_path)
# 判断检测对象是否为空
if (xyxy_list != []):
# ---------------- 加载字体 ----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# 中文
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# 英文、俄语、西班牙语、阿拉伯语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# 韩语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
for i in range(len(xyxy_list)):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
# ------------ 边框坐标 ------------
x0 = int(xyxy_list[i][0])
y0 = int(xyxy_list[i][1])
x1 = int(xyxy_list[i][2])
y1 = int(xyxy_list[i][3])
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
# ---------- 加入目标尺寸 ----------
w_obj = x1 - x0
h_obj = y1 - y0
area_obj = w_obj * h_obj
area_obj_all.append(area_obj)
det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list)
# -------------- 目标尺寸计算 --------------
for i in range(len(area_obj_all)):
if (0 < area_obj_all[i] <= 32 ** 2):
s_obj = s_obj + 1
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
m_obj = m_obj + 1
elif (area_obj_all[i] > 96 ** 2):
l_obj = l_obj + 1
sml_obj_total = s_obj + m_obj + l_obj
objSize_dict = {}
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
# ------------ 类别统计 ------------
clsRatio_dict = {}
clsDet_dict = Counter(cls_det_stat)
clsDet_dict_sum = sum(clsDet_dict.values())
for k, v in clsDet_dict.items():
clsRatio_dict[k] = v / clsDet_dict_sum
return det_img, objSize_dict, clsRatio_dict
else:
print("图片目标不存在!")
return None, None, None
def clear_image():
return None
def main(args):
gr.close_all()
global model_cls_name_cp, cls_name
source = args.source
img_tool = args.img_tool
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
inference_size = args.inference_size
slider_step = args.slider_step
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
model_names = yaml_csv(model_cfg, "model_names") # 模型名称
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称
model_cls_name_cp = model_cls_name.copy() # 类别名称
#################################################################################
with gr.Blocks() as gyd:
with gr.Box():
with gr.Row():
gr.Markdown("### 基于YOLOv8的图像检测系统")
with gr.Row():
with gr.Column():
with gr.Tabs():
with gr.TabItem("目标检测与图像分割"):
with gr.Row():
inputs_img = gr.Image(image_mode="RGB",
source=source,
tool=img_tool,
type="filepath",
label="原始图片")
with gr.Row():
inputs_model = gr.Dropdown(choices=model_names,
value=model_name,
type="value",
label="模型")
with gr.Row():
inputs_size = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸")
with gr.Row():
input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
with gr.Row():
inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
with gr.Row():
clear_btn = gr.Button('清除')
det_btn_img = gr.Button(value='提交', variant="primary")
with gr.TabItem("图像分类"):
inputs_imgs_variable = gr.Variable(value="")
file_output = gr.File()
upload_button = gr.UploadButton("Click to Upload a File",
file_types=["image"],
file_count="multiple")
det_btn_01_webcam = gr.Button(value='多图片检测', variant="primary")
with gr.Column():
with gr.Tabs():
with gr.TabItem("目标检测与图像分割"):
with gr.Row():
outputs_img = gr.Image(type="pil", label="检测图片")
with gr.Row():
outputs_objSize = gr.Label(label="目标尺寸占比统计")
with gr.Row():
outputs_clsSize = gr.Label(label="类别检测占比统计")
with gr.TabItem("图像分类"):
with gr.Row():
outputs_img02 = gr.Gallery(label="检测图片")
with gr.Row():
example_list = [
["./img_examples/bus.jpg", "yolov8s", 640, 0.6, 0.5],
["./img_examples/giraffe.jpg", "yolov8l", 320, 0.5, 0.45],
["./img_examples/zidane.jpg", "yolov8m", 640, 0.6, 0.5],
["./img_examples/Millenial-at-work.jpg", "yolov8x", 1280, 0.5, 0.5],
["./img_examples/bus.jpg", "yolov8s-seg", 640, 0.6, 0.5],
["./img_examples/Millenial-at-work.jpg", "yolov8x-seg", 1280, 0.5, 0.5],]
gr.Examples(example_list, [inputs_img, inputs_model, inputs_size, input_conf, inputs_iou],
[outputs_img, outputs_objSize, outputs_clsSize],
yolo_det_img,
cache_examples=False)
det_btn_img.click(fn=yolo_det_img,
inputs=[inputs_img, inputs_model, inputs_size, input_conf, inputs_iou],
outputs=[outputs_img, outputs_objSize, outputs_clsSize])
clear_btn.click(fn=clear_image, inputs=[], outputs=[inputs_img])
# upload_button.upload(upload_file, upload_button, inputs_imgs_variable)
# det_btn_01_webcam.click(fn=yolo_det_img_multiple,
# inputs=[
# inputs_imgs_variable, inputs_model01, inputs_size01, input_conf01, inputs_iou01],
# outputs=[outputs_img02])
return gyd
###############################################################################################################
# # 标题
# title = "Gradio YOLOv8 Det"
# # 描述
# description = "<div align='center'>基于YOLOv8的目标检测与图像分割系统</div>"
if __name__ == "__main__":
args = parse_args()
gyd = main(args)
is_share = args.is_share
gyd.launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
share=is_share, # 项目共享,其他设备可以访问
favicon_path="./icon/logo.ico", # 网页图标
show_error=True, # 在浏览器控制台中显示错误信息
quiet=True, # 禁止大多数打印语句
)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/yuyangup/gradio-yolov8-det.git
git@gitee.com:yuyangup/gradio-yolov8-det.git
yuyangup
gradio-yolov8-det
Gradio-YOLOv8-Det
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385