代码拉取完成,页面将自动刷新
同步操作将从 ahqzy/onnx_convert 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import sys
import importlib
import importlib.util
import numpy as np
import version_check
import log
logger = log.getLogger(__name__, log.INFO)
try:
import torch
except Exception as e:
print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@00@')
print(e)
print('Please install torch(pip install torch==1.13.1)')
print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
sys.exit(-1)
else:
version_check.check('torch', torch.__version__.split('+')[0], '1.13.1')
try:
import torchvision
except Exception as e:
print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
print(e)
print('Please install torchvision(pip install torchvision==0.14.1)')
print('@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@')
sys.exit(-1)
else:
version_check.check('torchvision', torchvision.__version__.split('+')[0], '0.14.1')
def convert_to_np_type(data_type):
types = {
'float' : np.float32,
'float32' : np.float32,
'uint8' : np.uint8,
'int8' : np.int8,
'uint16' : np.uint16,
'int16' : np.int16,
'int32' : np.int32,
'int64' : np.int64,
'string' : np.object_,
'bool' : np.bool_,
'float16' : np.float16,
'float64' : np.float64,
'uint32' : np.uint32,
'uint64' : np.uint64,
'complex64' : np.complex64,
'complex' : np.complex_,
'null' : ""
}
return types.get(data_type, np.float32)
def check_module(module_name):
"""
Checks if module can be imported without actually
importing it
"""
module_spec = importlib.util.find_spec(module_name)
if module_spec is None:
logger.warn("Module: {} not found".format(module_name))
return None
else:
logger.info("Module: {} can be imported".format(module_name))
return module_spec
def convert_pt_model_and_params_2_onnx(model_path, output, op_set, input_shape_list,
model_def_file, model_class_name, output_num, model_input_type, keep_batch, params_file):
logger.info('Begin converting pytorch to onnx...')
if model_def_file != '':
index = model_def_file.rindex('/')
dir_path = model_def_file[:index]
sys.path.append(dir_path)
params = {}
if params_file != '':
params_file_module = params_file.split('/')[-1]
params_file_module = params_file_module.split('.')[-2]
logger.info('+++ params_file_module: {}'.format(params_file_module))
module_find = check_module(params_file_module)
if module_find != None:
logger.info('+++ get module: {}'.format(module_find))
module = importlib.import_module(params_file_module)
obj = getattr(module, 'param_dict', None)
if obj != None:
params = obj
else:
logger.error('Cannot get params from file: {}'.format(params_file))
sys.exit(-1)
else:
logger.error('---Cannot load params file: {}'.format(params_file))
sys.exit(-1)
input_type_list = []
if model_input_type != '':
input_type_list = model_input_type.split(',')
logger.info('got input_type_list: {}'.format(input_type_list))
#input_num = len(input_shape_list)
input_shape_list_ = []
for input_shape in input_shape_list:
input_shape=input_shape.strip('[')
input_shape=input_shape.strip(']')
input_shape=input_shape.split(',')
logger.info('got shape: {}'.format(input_shape))
input_shape_list_.append(input_shape)
logger.info('got input_shape_list: {}'.format(input_shape_list_))
input_shape_list_int = []
for input_shape in input_shape_list_:
#shape = [int(input_shape[0]), int(input_shape[1]), int(input_shape[2]), int(input_shape[3])]
shape = [int(s) for s in input_shape]
input_shape_list_int.append(shape)
logger.info('got input_shape_list_int: {}'.format(input_shape_list_int))
if len(input_type_list) > 0 and len(input_type_list) != len(input_shape_list_int):
logger.error('Error: len of input_type_list != len of input_shape_list')
sys.exit(-1)
input_tensor_list = []
input_name_list = []
output_name_list = []
for i in range(output_num):
output_name = 'output_' + str(i)
output_name_list.append(output_name)
for idx, input_shape in enumerate(input_shape_list_int):
#input_tensor_list.append(torch.randn(*input_shape))
data_type = np.float32
if len(input_type_list) > 0:
data_type = convert_to_np_type(input_type_list[idx])
logger.info('get data_type: {}'.format(data_type))
data_array = np.array(np.random.random(input_shape), dtype=data_type)
input_tensor_list.append(torch.from_numpy(data_array))
input_name = 'input_' + str(idx)
input_name_list.append(input_name)
input_tensor_tuple = tuple(input_tensor_list)
logger.info('---input_name_list: {}'.format(input_name_list))
dynamic_axes_dict = {}
if keep_batch == 0:
for input_name in input_name_list:
dynamic_axes_dict[input_name] = {0:'-1'}
for output_name in output_name_list:
dynamic_axes_dict[output_name] = {0:'-1'}
#in_shape=[int(input_shape[0]), int(input_shape[1]), int(input_shape[2]), int(input_shape[3])]
out = output.split('.onnx')[-2]
#print('out is ', out)
target_module = ''
if '.' in model_class_name:
n = model_class_name.rindex('.')
m = model_class_name[:n]
model_class_name = model_class_name.split('.')[-1]
'''
m = model_class_name[:n+1]
last = model_class_name.split('.')[-1]
model_class_name = last
last_ = last.lower()
m = m + last_
print('m is ', m)
'''
target_module = m
else:
target_module = model_def_file.split('/')[-1]
target_module = target_module.split('.')[-2]
logger.info('convert_pt_model_and_params_2_onnx, target_module: {}'.format(target_module))
module_find = check_module(target_module)
if module_find != None:
logger.info('----get module: {}'.format(module_find))
module = importlib.import_module(target_module)
cls = getattr(module, model_class_name, None)
if cls != None:
if len(params) > 0:
model = cls(**params)
m = torch.load(model_path, map_location=torch.device('cpu'))
else:
model = cls()
m = torch.load(model_path, map_location=torch.device('cpu'))
#m = m.cpu() #cuda()
torch.onnx.export(
m,
input_tensor_tuple, #(x),
output,
opset_version=op_set,
do_constant_folding=True, # 是否执行常量折叠优化
input_names=input_name_list, #["input"], # 模型输入名
output_names=output_name_list, #["output"], # 模型输出名
#dynamic_axes={'input':{0:'batch_size'}, 'output':{0:'batch_size'}}
dynamic_axes=dynamic_axes_dict #{'input_0':{0:'-1'}, 'output':{0:'-1'}}
)
else:
logger.warn('There is no {} in {}'.format(model_class_name, model_def_file))
else:
logger.info('Cound not find {}'.format(model_def_file))
#sys.exit()
def convert_pt_state_dict_2_onnx(model_path, output, op_set, input_shape_list,
model_def_file, model_class_name, model_weights_file, output_num, model_input_type, keep_batch, params_file):
logger.info('Begin converting pytorch state dict to onnx...')
if model_def_file != '':
index = model_def_file.rindex('/')
dir_path = model_def_file[:index]
sys.path.append(dir_path)
params = {}
if params_file != '':
params_file_module = params_file.split('/')[-1]
params_file_module = params_file_module.split('.')[-2]
module_find = check_module(params_file_module)
if module_find != None:
logger.info('----get module: {}'.format(module_find))
module = importlib.import_module(params_file_module)
obj = getattr(module, 'param_dict', None)
if obj != None:
params = obj
else:
logger.info('convert_pt_state_dict_2_onnx, Cannot get params from file: {}'.format(params_file))
sys.exit(-1)
else:
logger.error('convert_pt_state_dict_2_onnx, Cannot load params file: {}'.format(params_file))
sys.exit(-1)
input_type_list = []
if model_input_type != '':
input_type_list = model_input_type.split(',')
#input_num = len(input_shape_list)
input_shape_list_ = []
for input_shape in input_shape_list:
input_shape=input_shape.strip('[')
input_shape=input_shape.strip(']')
input_shape=input_shape.split(',')
logger.info('got shape: {}'.format(input_shape))
input_shape_list_.append(input_shape)
logger.info('convert_pt_state_dict_2_onnx, got input_shape_list: {}'.format(input_shape_list_))
input_shape_list_int = []
for input_shape in input_shape_list_:
#shape = [int(input_shape[0]), int(input_shape[1]), int(input_shape[2]), int(input_shape[3])]
shape = [int(s) for s in input_shape]
input_shape_list_int.append(shape)
logger.info('convert_pt_state_dict_2_onnx, got input_shape_list_int: {}'.format(input_shape_list_int))
if len(input_type_list) > 0 and len(input_type_list) != len(input_shape_list_int):
logger.error('Error:: len of input_type_list != len of input_shape_list')
sys.exit(-1)
input_tensor_list = []
input_name_list = []
output_name_list = []
for i in range(output_num):
output_name = 'output_' + str(i)
output_name_list.append(output_name)
for idx, input_shape in enumerate(input_shape_list_int):
#input_tensor_list.append(torch.randn(*input_shape))
data_type = np.float32
if len(input_type_list) > 0:
data_type = convert_to_np_type(input_type_list[idx])
data_array = np.array(np.random.random(input_shape), dtype=data_type)
input_tensor_list.append(torch.from_numpy(data_array))
input_name = 'input_' + str(idx)
input_name_list.append(input_name)
input_tensor_tuple = tuple(input_tensor_list)
logger.info('convert_pt_state_dict_2_onnx, input_name_list: {}'.format(input_name_list))
dynamic_axes_dict = {}
if keep_batch == 0:
for input_name in input_name_list:
dynamic_axes_dict[input_name] = {0:'-1'}
for output_name in output_name_list:
dynamic_axes_dict[output_name] = {0:'-1'}
#in_shape=[int(input_shape[0]), int(input_shape[1]), int(input_shape[2]), int(input_shape[3])]
out=output.split('.onnx')[-2]
#print('out is ', out)
target_module = ''
if '.' in model_class_name:
n = model_class_name.rindex('.')
m = model_class_name[:n]
model_class_name = model_class_name.split('.')[-1]
'''
m = model_class_name[:n+1]
last = model_class_name.split('.')[-1]
model_class_name = last
last_ = last.lower()
m = m + last_
print('m is ', m)
'''
target_module = m
else:
target_module = model_def_file.split('/')[-1]
target_module = target_module.split('.')[-2]
logger.info('convert_pt_state_dict_2_onnx, target_module: {}'.format(target_module))
module_find = check_module(target_module)
if module_find != None:
logger.info('----get module: {}'.format(module_find))
module = importlib.import_module(target_module)
cls = getattr(module, model_class_name, None)
if cls != None:
if len(params) > 0:
m = cls(**params)
else:
m = cls()
####
orig_state_dict = m.state_dict()
param_names = orig_state_dict.keys()
state_dict = torch.load(model_weights_file, map_location=torch.device('cpu'))
new_state_dict = {}
for key, value in state_dict.items():
for name in param_names:
if key in name:
#print('got key:', key, name)
new_state_dict[name] = value
break
######
#m.load_state_dict(torch.load(model_weights_file, map_location=torch.device('cpu')))
m.load_state_dict(new_state_dict)
m = m.cpu() #cuda()
#x = torch.randn(int(input_shape[0]), int(input_shape[1]), int(input_shape[2]), int(input_shape[3]))
torch.onnx.export(
m,
input_tensor_tuple, #x,
output,
opset_version=op_set,
do_constant_folding=True, # 是否执行常量折叠优化
input_names=input_name_list, #["input"], # 模型输入名
output_names=output_name_list, #["output"], # 模型输出名
dynamic_axes=dynamic_axes_dict #{'input':{0:'-1'}, 'output':{0:'-1'}}
)
else:
print('There is no {} in {}'.format(model_class_name, model_def_file))
else:
logger.warn('Cound not find {}'.format(model_def_file))
def convert_pt2onnx(model_path, output, op_set, input_shape_list,
model_def_file, model_class_name, model_weights_file, output_num,
model_input_type, keep_batch, params_file):
if model_weights_file == '':
convert_pt_model_and_params_2_onnx(model_path, output, op_set, input_shape_list,
model_def_file, model_class_name, output_num, model_input_type, keep_batch, params_file)
else:
convert_pt_state_dict_2_onnx(model_path, output, op_set, input_shape_list,
model_def_file, model_class_name, model_weights_file, output_num, model_input_type, keep_batch, params_file)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。