1 Star 0 Fork 7

yaoh82/onnx_convert

forked from ahqzy/onnx_convert 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
darknet2onnx.py 49.84 KB
一键复制 编辑 原始数据 按行查看 历史
ahqzy 提交于 2023-06-13 22:16 . control darknet concat
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231
from __future__ import print_function
from collections import OrderedDict
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np
import argparse, sys
import log
logger = log.getLogger(__name__, log.INFO)
class DarkNetParser(object):
def __init__(self, supported_layers):
"""Initializes a DarkNetParser object.
Keyword argument:
supported_layers -- a string list of supported layers in DarkNet naming convention,
parameters are only added to the class dictionary if a parsed layer is included.
"""
# A list of YOLOv4 layers containing dictionaries with all layer
# parameters:
self.layer_configs = OrderedDict()
self.supported_layers = supported_layers
self.layer_counter = 0
def parse_cfg_file(self, cfg_file_path):
"""Takes the yolov4.cfg file and parses it layer by layer,
appending each layer's parameters as a dictionary to layer_configs.
Keyword argument:
cfg_file_path -- path to the yolov4.cfg file as string
"""
with open(cfg_file_path, 'r') as cfg_file:
remainder = cfg_file.read()
while remainder is not None:
layer_dict, layer_name, remainder = self._next_layer(remainder)
if layer_dict is not None:
self.layer_configs[layer_name] = layer_dict
return self.layer_configs
def _next_layer(self, remainder):
"""Takes in a string and segments it by looking for DarkNet delimiters.
Returns the layer parameters and the remaining string after the last delimiter.
Example for the first Conv layer in yolo.cfg ...
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
... becomes the following layer_dict return value:
{'activation': 'leaky', 'stride': 1, 'pad': 1, 'filters': 32,
'batch_normalize': 1, 'type': 'convolutional', 'size': 3}.
'001_convolutional' is returned as layer_name, and all lines that follow in yolo.cfg
are returned as the next remainder.
Keyword argument:
remainder -- a string with all raw text after the previously parsed layer
"""
remainder = remainder.split('[', 1)
if len(remainder) == 2:
remainder = remainder[1]
else:
return None, None, None
remainder = remainder.split(']', 1)
if len(remainder) == 2:
layer_type, remainder = remainder
else:
return None, None, None
if remainder.replace(' ', '')[0] == '#':
remainder = remainder.split('\n', 1)[1]
if '\n\n' in remainder:
layer_param_block, remainder = remainder.split('\n\n', 1)
else:
layer_param_block, remainder = remainder, ''
layer_param_lines = layer_param_block.split('\n')[1:]
layer_name = str(self.layer_counter).zfill(3) + '_' + layer_type
layer_dict = dict(type=layer_type)
if layer_type in self.supported_layers:
for param_line in layer_param_lines:
if param_line[0] == '#':
continue
param_type, param_value = self._parse_params(param_line)
layer_dict[param_type] = param_value
else:
for param_line in layer_param_lines:
if 'class' in param_line or 'num' in param_line or 'mask' in param_line:
param_type, param_value = self._parse_params(param_line)
layer_dict[param_type] = param_value
if len(layer_dict) == 1:
return None, None, remainder
self.layer_counter += 1
return layer_dict, layer_name, remainder
def _parse_params(self, param_line):
"""Identifies the parameters contained in one of the cfg file and returns
them in the required format for each parameter type, e.g. as a list, an int or a float.
Keyword argument:
param_line -- one parsed line within a layer block
"""
param_line = param_line.replace(' ', '')
param_type, param_value_raw = param_line.split('=')
param_value = None
if param_type == 'layers':
layer_indexes = list()
for index in param_value_raw.split(','):
layer_indexes.append(int(index))
param_value = layer_indexes
elif isinstance(param_value_raw, str) and not param_value_raw.isalpha():
condition_param_value_positive = param_value_raw.isdigit()
condition_param_value_negative = param_value_raw[0] == '-' and \
param_value_raw[1:].isdigit()
if condition_param_value_positive or condition_param_value_negative:
param_value = int(param_value_raw)
elif ',' in param_value_raw:
param_value = param_value_raw.split(',')
else:
param_value = float(param_value_raw)
else:
param_value = str(param_value_raw)
return param_type, param_value
class MajorNodeSpecs(object):
"""Helper class used to store the names of ONNX output names,
corresponding to the output of a DarkNet layer and its output channels.
Some DarkNet layers are not created and there is no corresponding ONNX node,
but we still need to track them in order to set up skip connections.
"""
def __init__(self, name, channels):
""" Initialize a MajorNodeSpecs object.
Keyword arguments:
name -- name of the ONNX node
channels -- number of output channels of this node
"""
self.name = name
self.channels = channels
self.created_onnx_node = False
if name is not None and isinstance(channels, int) and channels > 0:
self.created_onnx_node = True
class ConvParams(object):
"""Helper class to store the hyper parameters of a Conv layer,
including its prefix name in the ONNX graph and the expected dimensions
of weights for convolution, bias, and batch normalization.
Additionally acts as a wrapper for generating safe names for all
weights, checking on feasible combinations.
"""
def __init__(self, node_name, batch_normalize, conv_weight_dims):
"""Constructor based on the base node name (e.g. 101_convolutional), the batch
normalization setting, and the convolutional weights shape.
Keyword arguments:
node_name -- base name of this YOLO convolutional layer
batch_normalize -- bool value if batch normalization is used
conv_weight_dims -- the dimensions of this layer's convolutional weights
"""
self.node_name = node_name
self.batch_normalize = batch_normalize
assert len(conv_weight_dims) == 4
self.conv_weight_dims = conv_weight_dims
def generate_param_name(self, param_category, suffix):
"""Generates a name based on two string inputs,
and checks if the combination is valid."""
assert suffix
assert param_category in ['bn', 'conv']
assert(suffix in ['scale', 'mean', 'var', 'weights', 'bias'])
if param_category == 'bn':
assert self.batch_normalize
assert suffix in ['scale', 'bias', 'mean', 'var']
elif param_category == 'conv':
assert suffix in ['weights', 'bias']
if suffix == 'bias':
assert not self.batch_normalize
param_name = self.node_name + '_' + param_category + '_' + suffix
return param_name
class ResizeParams(object):
# Helper class to store the scale parameter for an Resize node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "scale"
return param_name
#qiuzy add for opset_11
class ResizeParamsOpSet11(object):
# Helper class to store the scale parameter for an Resize node.
def __init__(self, node_name, scales, roi):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.scales = scales
self.roi = roi
def generate_scales_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "scale"
return param_name
def generate_roi_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "roi"
return param_name
class ROIParams(object):
# Helper class to store the scale parameter for an ROI node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "roi"
return param_name
class ReshapeParams(object):
# Helper class to store the scale parameter for an Reshape node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "shape"
return param_name
class StartParams(object):
# Helper class to store the scale parameter for an Start node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "start"
return param_name
class EndParams(object):
# Helper class to store the scale parameter for an End node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "end"
return param_name
class AxesParams(object):
# Helper class to store the scale parameter for an Axes node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "axes"
return param_name
class StepParams(object):
# Helper class to store the scale parameter for an Step node.
def __init__(self, node_name, value):
"""Constructor based on the base node name (e.g. 86_Resize),
and the value of the scale input tensor.
Keyword arguments:
node_name -- base name of this YOLO Resize layer
value -- the value of the scale input to the Resize layer as numpy array
"""
self.node_name = node_name
self.value = value
def generate_param_name(self):
"""Generates the scale parameter name for the Resize node."""
param_name = self.node_name + '_' + "step"
return param_name
class WeightLoader(object):
"""Helper class used for loading the serialized weights of a binary file stream
and returning the initializers and the input tensors required for populating
the ONNX graph with weights.
"""
def __init__(self, weights_file_path):
"""Initialized with a path to the YOLOv4 .weights file.
Keyword argument:
weights_file_path -- path to the weights file.
"""
self.weights_file = self._open_weights_file(weights_file_path)
def load_resize_scales(self, resize_params):
"""
Returns the initializers with the value of the scale input
tensor given by resize_params.
Keyword argument:
resize_params -- a ResizeParams object
"""
initializer = list()
inputs = list()
name = resize_params.generate_param_name()
shape = resize_params.value.shape
data = resize_params.value
logger.debug('load_resize_scales, shape: {} {}'.format(shape, data))
scale_init = helper.make_tensor(
name, TensorProto.FLOAT, shape, data)
scale_input = helper.make_tensor_value_info(
name, TensorProto.FLOAT, shape)
initializer.append(scale_init)
inputs.append(scale_input)
return initializer, inputs
#qiuzy add
def load_resize_scales_for_opset11(self, resize_params):
"""
Returns the initializers with the value of the scale input
tensor given by resize_params.
Keyword argument:
resize_params -- a ResizeParams object
"""
initializer = list()
inputs = list()
name = resize_params.generate_scales_param_name()
shape = resize_params.scales.shape
data = resize_params.scales
roi_name = resize_params.generate_roi_param_name()
roi_shape = resize_params.roi.shape
roi_data = resize_params.roi
logger.debug('load_resize_scales, shape: {} {}'.format(shape, data))
roi_init = helper.make_tensor(
roi_name, TensorProto.FLOAT, roi_shape, roi_data)
roi_input = helper.make_tensor_value_info(
roi_name, TensorProto.FLOAT, roi_shape)
scale_init = helper.make_tensor(
name, TensorProto.FLOAT, shape, data)
scale_input = helper.make_tensor_value_info(
name, TensorProto.FLOAT, shape)
initializer.append(roi_init)
inputs.append(roi_input)
initializer.append(scale_init)
inputs.append(scale_input)
return initializer, inputs
def load_reshape_scales(self, reshape_params):
"""
Returns the initializers with the value of the reshape_params.
Keyword argument:
reshape_params -- a ReshapeParams object
"""
initializer = list()
inputs = list()
name = reshape_params.generate_param_name()
shape = reshape_params.value.shape
data = reshape_params.value
scale_init = helper.make_tensor(
name, TensorProto.INT64, shape, data)
scale_input = helper.make_tensor_value_info(
name, TensorProto.INT64, shape)
initializer.append(scale_init)
inputs.append(scale_input)
#print('load_reshape_scales:', shape, ', name:', name)
return initializer, inputs
def load_slice_params(self, slice_params):
initializer = list()
inputs = list()
for params in slice_params:
name = params.generate_param_name()
shape = params.value.shape
data = params.value
data_init = helper.make_tensor(
name, TensorProto.INT64, shape, data)
data_input = helper.make_tensor_value_info(
name, TensorProto.INT64, shape)
initializer.append(data_init)
inputs.append(data_input)
return initializer, inputs
def load_conv_weights(self, conv_params):
"""Returns the initializers with weights from the weights file and
the input tensors of a convolutional layer for all corresponding ONNX nodes.
Keyword argument:
conv_params -- a ConvParams object
"""
initializer = list()
inputs = list()
if conv_params.batch_normalize:
bias_init, bias_input = self._create_param_tensors(
conv_params, 'bn', 'bias')
bn_scale_init, bn_scale_input = self._create_param_tensors(
conv_params, 'bn', 'scale')
bn_mean_init, bn_mean_input = self._create_param_tensors(
conv_params, 'bn', 'mean')
bn_var_init, bn_var_input = self._create_param_tensors(
conv_params, 'bn', 'var')
initializer.extend(
[bn_scale_init, bias_init, bn_mean_init, bn_var_init])
inputs.extend([bn_scale_input, bias_input,
bn_mean_input, bn_var_input])
else:
bias_init, bias_input = self._create_param_tensors(
conv_params, 'conv', 'bias')
initializer.append(bias_init)
inputs.append(bias_input)
conv_init, conv_input = self._create_param_tensors(
conv_params, 'conv', 'weights')
initializer.append(conv_init)
inputs.append(conv_input)
return initializer, inputs
def _open_weights_file(self, weights_file_path):
"""Opens a YOLOv4 DarkNet file stream and skips the header.
Keyword argument:
weights_file_path -- path to the weights file.
"""
weights_file = open(weights_file_path, 'rb')
length_header = 5
np.ndarray(
shape=(length_header, ), dtype='int32', buffer=weights_file.read(
length_header * 4))
return weights_file
def _create_param_tensors(self, conv_params, param_category, suffix):
"""Creates the initializers with weights from the weights file together with
the input tensors.
Keyword arguments:
conv_params -- a ConvParams object
param_category -- the category of parameters to be created ('bn' or 'conv')
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
param_name, param_data, param_data_shape = self._load_one_param_type(
conv_params, param_category, suffix)
initializer_tensor = helper.make_tensor(
param_name, TensorProto.FLOAT, param_data_shape, param_data)
input_tensor = helper.make_tensor_value_info(
param_name, TensorProto.FLOAT, param_data_shape)
return initializer_tensor, input_tensor
def _load_one_param_type(self, conv_params, param_category, suffix):
"""Deserializes the weights from a file stream in the DarkNet order.
Keyword arguments:
conv_params -- a ConvParams object
param_category -- the category of parameters to be created ('bn' or 'conv')
suffix -- a string determining the sub-type of above param_category (e.g.,
'weights' or 'bias')
"""
param_name = conv_params.generate_param_name(param_category, suffix)
channels_out, channels_in, filter_h, filter_w = conv_params.conv_weight_dims
if param_category == 'bn':
param_shape = [channels_out]
elif param_category == 'conv':
if suffix == 'weights':
param_shape = [channels_out, channels_in, filter_h, filter_w]
elif suffix == 'bias':
param_shape = [channels_out]
param_size = np.product(np.array(param_shape))
param_data = np.ndarray(
shape=param_shape,
dtype='float32',
buffer=self.weights_file.read(param_size * 4))
param_data = param_data.flatten().astype(float)
return param_name, param_data, param_shape
class GraphBuilderONNX(object):
"""Class for creating an ONNX graph from a previously generated list of layer dictionaries."""
def __init__(self, output_tensors, support_mish):
"""Initialize with all DarkNet default parameters used creating YOLOv4,
and specify the output tensors as an OrderedDict for their output dimensions
with their names as keys.
Keyword argument:
output_tensors -- the output tensors as an OrderedDict containing the keys'
output dimensions
"""
self.output_tensors = output_tensors
self._nodes = list()
self.graph_def = None
self.input_tensor = None
self.epsilon_bn = 1e-5
self.momentum_bn = 0.99
self.alpha_lrelu = 0.1
self.param_dict = OrderedDict()
self.major_node_specs = list()
self.batch_size = 1
self.classes = 80
self.num = 9
self.support_mish = support_mish
def build_onnx_graph(
self,
layer_configs,
weights_file_path,
neck,
verbose=True):
"""Iterate over all layer configs (parsed from the DarkNet representation
of YOLOv4-608), create an ONNX graph, populate it with weights from the weights
file and return the graph definition.
Keyword arguments:
layer_configs -- an OrderedDict object with all parsed layers' configurations
weights_file_path -- location of the weights file
verbose -- toggles if the graph is printed after creation (default: True)
"""
for layer_name in layer_configs.keys():
layer_dict = layer_configs[layer_name]
#print('----- layer_name:', layer_name)
major_node_specs = self._make_onnx_node(layer_name, layer_dict)
if major_node_specs.name is not None:
self.major_node_specs.append(major_node_specs)
transposes = list()
total_grids = 0
for tensor_name in self.output_tensors.keys():
grids = 1
for i in self.output_tensors[tensor_name]:
grids *= i
total_grids += grids / (self.classes + 5)
output_dims = [self.batch_size, ] + \
self.output_tensors[tensor_name]
layer_name, layer_dict = tensor_name, {'output_dims': output_dims}
#print('++++ layer_name:', layer_name, ', output_dims:', output_dims)
transpose_name = self._make_transpose_node(layer_name, layer_dict, len(self.output_tensors))
transposes.append(transpose_name)
if neck == 'FPN':
transposes = transposes[::-1]
print('transposes: ', transposes)
output_name = 'outputs'
route_node = helper.make_node(
'Concat',
axis=1,
inputs=transposes,
outputs=[output_name],
name=output_name,
)
self._nodes.append(route_node)
output_dims = (self.batch_size, int(total_grids), self.classes + 5)
outputs = [helper.make_tensor_value_info(
output_name, TensorProto.FLOAT, output_dims)]
inputs = [self.input_tensor]
weight_loader = WeightLoader(weights_file_path)
initializer = list()
# If a layer has parameters, add them to the initializer and input lists.
for layer_name in self.param_dict.keys():
_, layer_type = layer_name.split('_', 1)
params = self.param_dict[layer_name]
if layer_type == 'convolutional':
initializer_layer, inputs_layer = weight_loader.load_conv_weights(
params)
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
elif layer_type == 'upsample':
#initializer_layer, inputs_layer = weight_loader.load_resize_scales(
# params)
#qiuzy add
initializer_layer, inputs_layer = weight_loader.load_resize_scales_for_opset11(
params)
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
elif 'reshape' in layer_type:
initializer_layer, inputs_layer = weight_loader.load_reshape_scales(params)
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
elif 'slice' in layer_type:
initializer_layer, inputs_layer = weight_loader.load_slice_params(params)
initializer.extend(initializer_layer)
inputs.extend(inputs_layer)
del weight_loader
self.graph_def = helper.make_graph(
nodes=self._nodes,
name='YOLO-Detect',
inputs=inputs,
outputs=outputs,
initializer=initializer
)
if verbose:
print(helper.printable_graph(self.graph_def))
model_def = helper.make_model(self.graph_def, opset_imports=[helper.make_opsetid("", 11)],
producer_name='darknet to ONNX example')
return model_def
def _make_onnx_node(self, layer_name, layer_dict):
"""Take in a layer parameter dictionary, choose the correct function for
creating an ONNX node and store the information important to graph creation
as a MajorNodeSpec object.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
layer_type = layer_dict['type']
if self.input_tensor is None:
if layer_type == 'net':
major_node_output_name, major_node_output_channels = self._make_input_tensor(
layer_name, layer_dict)
major_node_specs = MajorNodeSpecs(major_node_output_name,
major_node_output_channels)
else:
raise ValueError('The first node has to be of type "net".')
else:
node_creators = dict()
node_creators['convolutional'] = self._make_conv_node
node_creators['shortcut'] = self._make_shortcut_node
node_creators['route'] = self._make_route_node
#node_creators['upsample'] = self._make_resize_node
node_creators['upsample'] = self._make_resize_node_for_opset_11 #qiuzy
node_creators['maxpool'] = self._make_maxpool_node
if layer_type in node_creators.keys():
major_node_output_name, major_node_output_channels = \
node_creators[layer_type](layer_name, layer_dict)
major_node_specs = MajorNodeSpecs(major_node_output_name,
major_node_output_channels)
else:
print(
'Layer of type %s not supported, skipping ONNX node generation.' %
layer_type)
if layer_type == 'yolo':
self.classes = layer_dict['classes']
self.num = layer_dict['num']
major_node_specs = MajorNodeSpecs(layer_name,
None)
return major_node_specs
def _make_input_tensor(self, layer_name, layer_dict):
"""Create an ONNX input tensor from a 'net' layer and store the batch size.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
batch_size = layer_dict['batch']
channels = layer_dict['channels']
height = layer_dict['height']
width = layer_dict['width']
self.batch_size = batch_size
input_tensor = helper.make_tensor_value_info(
str(layer_name), TensorProto.FLOAT, [
batch_size, channels, height, width])
self.input_tensor = input_tensor
return layer_name, channels
def _get_previous_node_specs(self, target_index=-1):
"""Get a previously generated ONNX node (skip those that were not generated).
Target index can be passed for jumping to a specific index.
Keyword arguments:
target_index -- optional for jumping to a specific index (default: -1 for jumping
to previous element)
"""
previous_node = None
for node in self.major_node_specs[target_index::-1]:
if node.created_onnx_node:
previous_node = node
break
assert previous_node is not None
return previous_node
def _make_conv_node(self, layer_name, layer_dict):
"""Create an ONNX Conv node with optional batch normalization and
activation nodes.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
previous_channels = previous_node_specs.channels
kernel_size = layer_dict['size']
stride = layer_dict['stride']
filters = layer_dict['filters']
batch_normalize = False
if 'batch_normalize' in layer_dict.keys(
) and layer_dict['batch_normalize'] == 1:
batch_normalize = True
groups = 1
if 'groups' in layer_dict.keys():
groups = layer_dict['groups']
previous_channels = previous_channels // groups
kernel_shape = [kernel_size, kernel_size]
weights_shape = [filters, previous_channels] + kernel_shape
conv_params = ConvParams(layer_name, batch_normalize, weights_shape)
strides = [stride, stride]
dilations = [1, 1]
weights_name = conv_params.generate_param_name('conv', 'weights')
inputs.append(weights_name)
if not batch_normalize:
bias_name = conv_params.generate_param_name('conv', 'bias')
inputs.append(bias_name)
conv_node = helper.make_node(
'Conv',
inputs=inputs,
outputs=[layer_name],
kernel_shape=kernel_shape,
strides=strides,
group=groups,
auto_pad='SAME_LOWER',
dilations=dilations,
name=layer_name
)
self._nodes.append(conv_node)
inputs = [layer_name]
layer_name_output = layer_name
if batch_normalize:
layer_name_bn = layer_name + '_bn'
bn_param_suffixes = ['scale', 'bias', 'mean', 'var']
for suffix in bn_param_suffixes:
bn_param_name = conv_params.generate_param_name('bn', suffix)
inputs.append(bn_param_name)
batchnorm_node = helper.make_node(
'BatchNormalization',
inputs=inputs,
outputs=[layer_name_bn],
epsilon=self.epsilon_bn,
momentum=self.momentum_bn,
name=layer_name_bn
)
self._nodes.append(batchnorm_node)
inputs = [layer_name_bn]
layer_name_output = layer_name_bn
if layer_dict['activation'] == 'leaky':
layer_name_lrelu = layer_name + '_lrelu'
lrelu_node = helper.make_node(
'LeakyRelu',
inputs=inputs,
outputs=[layer_name_lrelu],
name=layer_name_lrelu,
alpha=self.alpha_lrelu
)
self._nodes.append(lrelu_node)
inputs = [layer_name_lrelu]
layer_name_output = layer_name_lrelu
elif layer_dict['activation'] == 'relu':
layer_name_relu = layer_name + '_relu'
relu_node = helper.make_node(
'Relu',
inputs=inputs,
outputs=[layer_name_relu],
name=layer_name_relu
)
self._nodes.append(relu_node)
inputs = [layer_name_relu]
layer_name_output = layer_name_relu
elif layer_dict['activation'] == 'logistic':
layer_name_logistic = layer_name + '_logistic'
logistic_node = helper.make_node(
'Sigmoid',
inputs=inputs,
outputs=[layer_name_logistic],
name=layer_name_logistic
)
self._nodes.append(logistic_node)
inputs = [layer_name_logistic]
layer_name_output = layer_name_logistic
elif layer_dict['activation'] == 'mish':
if self.support_mish == 0:
layer_name_softplus = layer_name + '_softplus'
softplus_node = helper.make_node(
'Softplus',
inputs=inputs,
outputs=[layer_name_softplus],
name=layer_name_softplus
)
self._nodes.append(softplus_node)
inputs_t = [layer_name_softplus]
layer_name_tanh = layer_name + '_tanh'
tanh_node = helper.make_node(
'Tanh',
inputs=inputs_t,
outputs=[layer_name_tanh],
name=layer_name_tanh
)
self._nodes.append(tanh_node)
inputs.append(layer_name_tanh)
layer_name_mish = layer_name + '_mish'
mul_node = helper.make_node(
'Mul',
inputs=inputs,
outputs=[layer_name_mish],
name=layer_name_mish
)
self._nodes.append(mul_node)
inputs = [layer_name_mish]
layer_name_output = layer_name_mish
else: #qiuzy add for mish mapping
logger.debug('mish mapping')
layer_name_mish = layer_name + '_mish'
mish_node = helper.make_node(
'Mish',
inputs=inputs,
outputs=[layer_name_mish],
name=layer_name_mish,
domain='com.metax-tech'
)
self._nodes.append(mish_node)
inputs = [layer_name_mish]
layer_name_output = layer_name_mish
elif layer_dict['activation'] == 'linear':
pass
else:
print('Activation not supported.')
self.param_dict[layer_name] = conv_params
return layer_name_output, filters
def _make_shortcut_node(self, layer_name, layer_dict):
"""Create an ONNX Add node with the shortcut properties from
the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
shortcut_index = layer_dict['from']
activation = layer_dict['activation']
assert activation == 'linear'
first_node_specs = self._get_previous_node_specs()
second_node_specs = self._get_previous_node_specs(
target_index=shortcut_index)
assert first_node_specs.channels == second_node_specs.channels
channels = first_node_specs.channels
inputs = [first_node_specs.name, second_node_specs.name]
shortcut_node = helper.make_node(
'Add',
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(shortcut_node)
return layer_name, channels
def _make_route_node(self, layer_name, layer_dict):
"""If the 'layers' parameter from the DarkNet configuration is only one index, continue
node creation at the indicated (negative) index. Otherwise, create an ONNX Concat node
with the route properties from the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
route_node_indexes = layer_dict['layers']
if len(route_node_indexes) == 1:
split_index = route_node_indexes[0]
prev_node_specs = self._get_previous_node_specs(target_index=-1)
input_node_specs = self._get_previous_node_specs(
target_index=split_index if split_index < 0 else split_index + 1)
if split_index == -4 and 'maxpool' not in prev_node_specs.name:
# Increment by one because we skipped the YOLO layer:
split_index += 1
self.major_node_specs = self.major_node_specs[:split_index]
layer_name = None
channels = None
elif 'groups' in layer_dict:
assert layer_dict['groups'] == 2
assert layer_dict['group_id'] == 1
inputs = [input_node_specs.name]
slice_name = layer_name + '_slice'
channels = input_node_specs.channels
start = np.array([channels // 2]).astype(np.int64)
start_params = StartParams(layer_name, start)
self.param_dict[slice_name] = [start_params]
param_name = start_params.generate_param_name()
inputs.append(param_name)
end = np.array([channels]).astype(np.int64)
end_params = EndParams(layer_name, end)
self.param_dict[slice_name].append(end_params)
param_name = end_params.generate_param_name()
inputs.append(param_name)
axes = np.array([1]).astype(np.int64)
axes_params = AxesParams(layer_name, axes)
self.param_dict[slice_name].append(axes_params)
param_name = axes_params.generate_param_name()
inputs.append(param_name)
steps = np.array([1]).astype(np.int64)
step_params = StepParams(layer_name, steps)
self.param_dict[slice_name].append(step_params)
param_name = step_params.generate_param_name()
inputs.append(param_name)
slice_node = helper.make_node(
'Slice',
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
channels = channels // 2
self._nodes.append(slice_node)
else:
inputs = [input_node_specs.name]
route_node = helper.make_node(
'Concat',
axis=1,
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
channels = input_node_specs.channels
self._nodes.append(route_node)
else:
inputs = list()
channels = 0
for index in route_node_indexes:
if index > 0:
# Increment by one because we count the input as a node (DarkNet
# does not)
index += 1
route_node_specs = self._get_previous_node_specs(
target_index=index)
if index < -1 and int(layer_name.split('_')[0]) + index != int(route_node_specs.name.split('_')[0]):
index = int(layer_name.split('_')[0]) + index
route_node_specs = self._get_previous_node_specs(
target_index=index)
inputs.append(route_node_specs.name)
channels += route_node_specs.channels
assert inputs
assert channels > 0
route_node = helper.make_node(
'Concat',
axis=1,
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(route_node)
return layer_name, channels
def _make_resize_node(self, layer_name, layer_dict):
"""Create an ONNX Resize node with the properties from
the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
resize_scale_factors = float(layer_dict['stride'])
# Create the scale factor array with node parameters
scales = np.array([1.0, 1.0, resize_scale_factors, resize_scale_factors]).astype(np.float32)
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
logger.debug('_make_resize_node, scales: {}, shape: {}'.format(scales, scales.shape))
channels = previous_node_specs.channels
assert channels > 0
resize_params = ResizeParams(layer_name, scales)
scales_name = resize_params.generate_param_name()
inputs.append(scales_name)
resize_node = helper.make_node(
'Resize',
mode='nearest',
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(resize_node)
self.param_dict[layer_name] = resize_params
return layer_name, channels
#qiuzy add for opset_11
def _make_resize_node_for_opset_11(self, layer_name, layer_dict):
"""Create an ONNX Resize node with the properties from
the DarkNet-based graph.
Keyword arguments:
layer_name -- the layer's name (also the corresponding key in layer_configs)
layer_dict -- a layer parameter dictionary (one element of layer_configs)
"""
resize_scale_factors = float(layer_dict['stride'])
# Create the scale factor array with node parameters
scales = np.array([1.0, 1.0, resize_scale_factors, resize_scale_factors]).astype(np.float32)
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
logger.debug('_make_resize_node, scales: {}, shape: {}'.format(scales, scales.shape))
channels = previous_node_specs.channels
assert channels > 0
roi = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]).astype(np.float32)
resize_params = ResizeParamsOpSet11(layer_name, scales, roi)
roi_name = resize_params.generate_roi_param_name()
scales_name = resize_params.generate_scales_param_name()
inputs.append(roi_name)
inputs.append(scales_name)
resize_node = helper.make_node(
'Resize',
mode='nearest',
inputs=inputs,
outputs=[layer_name],
name=layer_name,
)
self._nodes.append(resize_node)
self.param_dict[layer_name] = resize_params
return layer_name, channels
def _make_maxpool_node(self, layer_name, layer_dict):
stride = layer_dict['stride']
kernel_size = layer_dict['size']
previous_node_specs = self._get_previous_node_specs()
inputs = [previous_node_specs.name]
channels = previous_node_specs.channels
kernel_shape = [kernel_size, kernel_size]
strides = [stride, stride]
assert channels > 0
maxpool_node = helper.make_node(
'MaxPool',
inputs=inputs,
outputs=[layer_name],
kernel_shape=kernel_shape,
strides=strides,
auto_pad='SAME_UPPER',
name=layer_name,
)
self._nodes.append(maxpool_node)
return layer_name, channels
def _make_transpose_node(self, layer_name, layer_dict, output_len):
inputs = [layer_name]
#print('------- layer_dict[\'output_dims\']:', layer_dict['output_dims'])
reshape_name = layer_name + '_reshape_1'
shape = np.array([layer_dict['output_dims'][0], self.num // output_len, self.classes + 5,
layer_dict['output_dims'][-2], layer_dict['output_dims'][-1]]).astype(np.int64)
reshape_params = ReshapeParams(layer_name, shape)
#print('_make_transpose_node, name:', reshape_name, ', shape:', shape)
self.param_dict[reshape_name] = reshape_params
param_name = reshape_params.generate_param_name()
inputs.append(param_name)
reshape_node = onnx.helper.make_node(
'Reshape',
inputs=inputs,
outputs=[reshape_name]
)
self._nodes.append(reshape_node)
transpose_name = layer_name + '_transpose'
permutations = (0, 1, 3, 4, 2)
transpose_node = onnx.helper.make_node(
'Transpose',
inputs=[reshape_name],
outputs=[transpose_name],
perm=permutations
)
self._nodes.append(transpose_node)
inputs = [transpose_name]
output_name = layer_name + '_reshape_2'
logger.debug('Got Reshape shape: {}'.format(layer_dict['output_dims']))
#qiuzy modify for dynamic batch
#shape = np.array([layer_dict['output_dims'][0], -1, self.classes + 5]).astype(np.int64)
shape = np.array([layer_dict['output_dims'][0], 3*layer_dict['output_dims'][2]*layer_dict['output_dims'][3], self.classes + 5]).astype(np.int64)
reshape_params = ReshapeParams(transpose_name, shape)
self.param_dict[output_name] = reshape_params
param_name = reshape_params.generate_param_name()
inputs.append(param_name)
reshape_node = onnx.helper.make_node(
'Reshape',
inputs=inputs,
outputs=[output_name]
)
self._nodes.append(reshape_node)
return output_name
def main(cfg_file='yolov4.cfg', weights_file='yolov4.weights', output_file='yolov4.onnx', strides=None, neck='PAN', support_mish=0):
cfg_file_path = cfg_file
supported_layers = ['net', 'convolutional', 'shortcut',
'route', 'upsample', 'maxpool']
parser = DarkNetParser(supported_layers)
layer_configs = parser.parse_cfg_file(cfg_file_path)
del parser
width = layer_configs['000_net']['width']
height = layer_configs['000_net']['height']
conv_layers, num_anchors = [], []
for layer_key in layer_configs.keys():
if 'conv' in layer_key:
conv_layer = layer_key
if 'yolo' in layer_key:
yolo_layer = layer_key
num_anchors.append(len(layer_configs[yolo_layer]['mask']))
layer_name = '' if layer_configs[conv_layer]['activation'] == 'linear' \
else f"_{layer_configs[conv_layer]['activation']}"
conv_layers.append(conv_layer + layer_name)
classes = layer_configs[yolo_layer]['classes']
if not strides:
return
output_tensor_dims = OrderedDict()
for conv_layer, stride, num_anchor in zip(conv_layers, strides, num_anchors):
output_tensor_dims[conv_layer] = [(classes + 5) * num_anchor, width // stride, height // stride]
# Create a GraphBuilderONNX object with the known output tensor dimensions:
builder = GraphBuilderONNX(output_tensor_dims, support_mish)
weights_file_path = weights_file
# Now generate an ONNX graph with weights from the previously parsed layer configurations
# and the weights file:
yolo_model_def = builder.build_onnx_graph(
layer_configs=layer_configs,
weights_file_path=weights_file_path,
neck=neck,
verbose=True)
# Once we have the model definition, we do not need the builder anymore:
del builder
# Perform a sanity check on the ONNX model definition:
#onnx.checker.check_model(yolo_model_def) #qiuzy debug
try:
onnx.checker.check_model(yolo_model_def)
except onnx.checker.ValidationError as e:
logger.warning('The model cannot be saved for: {}'.format(e))
if 'No' in str(e):
logger.warning('ignore mish warning, continue saving~')
else:
sys.exit()
else:
logger.info('Begin saving model...')
if support_mish == 1:
op_set = yolo_model_def.opset_import.add()
op_set.domain = 'com.metax-tech'
op_set.version = 1
# Serialize the generated ONNX graph to this file:
output_file_path = output_file
onnx.save(yolo_model_def, output_file_path)
print('Save ONNX File {} success!'.format(output_file_path))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Transform YOLO weights to ONNX.')
parser.add_argument('--cfg_file', type=str, default='cfg/yolov4.cfg', help='yolo cfg file')
parser.add_argument('--weights_file', type=str, default='yolov4.weights', help='yolo weights file')
parser.add_argument('--output_file', type=str, default='yolov4.onnx', help='yolo onnx file')
parser.add_argument('--strides', nargs='+', type=int, default=[8, 16, 32], help='YOLO model cell size')
parser.add_argument('--neck', type=str, default='PAN', help='use which kind neck')
parser.add_argument('--support_mish', type=int, default=0, help='mish mapping')
args = parser.parse_args()
main(cfg_file=args.cfg_file, weights_file=args.weights_file, output_file=args.output_file, strides=args.strides,
neck=args.neck, support_mish=0) #args.support_mish) #do mish convert outside after simplify(inferrence) for fp16 convert
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/yaoh82/onnx_convert.git
git@gitee.com:yaoh82/onnx_convert.git
yaoh82
onnx_convert
onnx_convert
master

搜索帮助