1 Star 0 Fork 7

yao/FEM-Basics

forked from 吃瓜群众/FEM-Basics 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
HW8_quad.m 14.69 KB
一键复制 编辑 原始数据 按行查看 历史
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542
clear; close all; clc;
N_CASE = 6;
h = zeros(1, N_CASE);
err = zeros(3, N_CASE);
for i = 1:N_CASE
N = 2^i;
h(i) = 1.0/N;
xMin = 0.0;
xMax = 1.0;
yMin = 0.0;
yMax = 1.0;
N1 = round((xMax-xMin)/h(i));
N2 = round((yMax-yMin)/h(i));
fprintf("\nCASE%d: h=1/%d\n", i, N);
err(:, i) = solve_2d_steady_linear_elasticity(xMin, xMax, yMin, yMax, N1, N2);
fprintf("\n |err|_inf=%e, |err|_L2=%e, |err|_H1=%e\n", err(1,i), err(2,i), err(3,i));
end
loglog(h, err(1,:), '-s')
hold on
loglog(h, err(2,:), '-s')
hold on
loglog(h, err(3,:), '-s')
grid on
% legend('inf', 'L2', 'semi-H1', 'Location', 'southeast')
loglog([1e0, 1e-2], [1e0, 1e-2])
grid on
loglog([1e0, 1e-2], [1e0, 1e-4])
grid on
loglog([1e0, 1e-2], [1e-1, 1e-7])
grid on
legend('inf', 'L2', 'semi-H1', '1st-order', '2nd-order', '3rd-order', 'Location', 'southeast')
function [errnorm] = solve_2d_steady_linear_elasticity(x_min, x_max, y_min, y_max, N1, N2)
global P T Pb Tb Jac
global lambda mu
lambda = 1.0;
mu = 2.0;
[P, T] = mesh_info_mat(x_min,x_max,y_min,y_max,N1,N2);
[Pb, Tb] = fem_info_mat(x_min,x_max,y_min,y_max,N1,N2);
[boundary_edge, boundary_node] = boundary_info_mat(N1, N2, T, Tb);
Nlb = size(Tb, 1); % Num of local basis functions
Nb = size(Pb, 2); % Num of global basis functions(FEM unknowns)
N = size(T,2); % Num of mesh/FEM elements
nbn = size(boundary_node, 2);
nbe = size(boundary_edge, 2);
% Element jacobian
Jac = zeros(N, 1);
for i = 1:N
p1 = P(:, T(1, i));
p2 = P(:, T(2, i));
p3 = P(:, T(3, i));
Jac(i) = calc_elem_jacobi(p1, p2, p3);
end
% Gauss quadrature coordinates & coefficients
gq_tri_n = 4;
gq_tri_x0 = [1.0/3, 1.0/5, 3.0/5, 1.0/5];
gq_tri_y0 = [1.0/3, 1.0/5, 1.0/5, 3.0/5];
gq_tri_w = [-27.0/96, 25.0/96, 25.0/96, 25.0/96];
gq_tri_x = zeros(N, gq_tri_n);
gq_tri_y = zeros(N, gq_tri_n);
for n = 1:N
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
[gq_tri_x(n, k), gq_tri_y(n, k)] = affine_mapping_back(n, x0, y0);
end
end
% Assemble the stiffness matrix
A1 = sparse(Nb, Nb);
A2 = sparse(Nb, Nb);
A3 = sparse(Nb, Nb);
A4 = sparse(Nb, Nb);
A5 = sparse(Nb, Nb);
A6 = sparse(Nb, Nb);
A7 = sparse(Nb, Nb);
A8 = sparse(Nb, Nb);
for n = 1:N
for alpha = 1:Nlb % trial
j = Tb(alpha, n);
for beta = 1:Nlb % test
i = Tb(beta, n);
tmp = zeros(8, 1);
for k = 1:gq_tri_n
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
gpj = grad_trial(alpha, n, x, y);
gpi = grad_test(beta, n, x, y);
tmp(1) = tmp(1) + gq_tri_w(k) * lambda * gpj(1) * gpi(1);
tmp(2) = tmp(2) + gq_tri_w(k) * mu * gpj(1) * gpi(1);
tmp(3) = tmp(3) + gq_tri_w(k) * mu * gpj(2) * gpi(2);
tmp(4) = tmp(4) + gq_tri_w(k) * lambda * gpj(2) * gpi(1);
tmp(5) = tmp(5) + gq_tri_w(k) * mu * gpj(1) * gpi(2);
tmp(6) = tmp(6) + gq_tri_w(k) * lambda * gpj(1) * gpi(2);
tmp(7) = tmp(7) + gq_tri_w(k) * mu * gpj(2) * gpi(1);
tmp(8) = tmp(8) + gq_tri_w(k) * lambda * gpj(2) * gpi(2);
end
tmp = tmp * abs(Jac(n));
A1(i, j) = A1(i, j) + tmp(1);
A2(i, j) = A2(i, j) + tmp(2);
A3(i, j) = A3(i, j) + tmp(3);
A4(i, j) = A4(i, j) + tmp(4);
A5(i, j) = A5(i, j) + tmp(5);
A6(i, j) = A6(i, j) + tmp(6);
A7(i, j) = A7(i, j) + tmp(7);
A8(i, j) = A8(i, j) + tmp(8);
end
end
end
A = [A1+2*A2+A3, A4+A5; A6+A7, A8+2*A3+A2];
% Assemble the load vector
b1 = zeros(Nb, 1);
b2 = zeros(Nb, 1);
for n = 1:N
for beta = 1:Nlb % test
i = Tb(beta, n);
tmp = zeros(2, 1);
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
fval = f(x, y);
tmp(1) = tmp(1) + gq_tri_w(k) * fval(1) * test_ref(beta, x0, y0);
tmp(2) = tmp(2) + gq_tri_w(k) * fval(2) * test_ref(beta, x0, y0);
end
tmp = tmp * abs(Jac(n));
b1(i) = b1(i) + tmp(1);
b2(i) = b2(i) + tmp(2);
end
end
b = [b1; b2];
% Dirichlet Boundary
for k = 1:nbn
if boundary_node(1, k) == -1
i = boundary_node(2, k);
g = u(Pb(1, i), Pb(2, i));
A(i, :) = 0;
A(i, i) = 1;
b(i) = g(1);
A(Nb + i, :) = 0;
A(Nb + i, Nb + i) = 1;
b(Nb + i) = g(2);
end
end
% Solve and Check
x = A\b;
u_sol = zeros(2, Nb);
for i = 1:Nb
u_sol(1, i) = x(i);
u_sol(2, i) = x(Nb+i);
end
errnorm = zeros(1, 3); %inf, L2, semi-H1 respectively
for n = 1:N
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 1);
for i = 1:Nlb
w = w + u_sol(:, Tb(i, n)) * trial_ref(i, x0, y0);
end
err = norm(w - u(x, y), Inf);
if err > errnorm(1)
errnorm(1) = err;
end
end
end
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 1);
for i = 1:Nlb
w = w + u_sol(:, Tb(i, n)) * trial_ref(i, x0, y0);
end
err = norm(w - u(x, y))^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm(2) = errnorm(2) + res;
end
errnorm(2) = sqrt(errnorm(2));
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 2);
for i = 1:Nlb
w = w + u_sol(:, Tb(i, n)) * grad_trial(i, n, x, y).';
end
err = norm(w - grad_u(x, y), 'fro')^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm(3) = errnorm(3) + res;
end
errnorm(3) = sqrt(errnorm(3));
end
function [P, T] = mesh_info_mat(xmin, xmax, ymin, ymax, n1, n2)
h1 = (xmax-xmin)/n1;
h2 = (ymax-ymin)/n2;
P = zeros(2, (n1+1)*(n2+1));
T = zeros(3, 2*n1*n2);
node_idx = zeros(n1+1, n2+1);
for i = 1:n1+1
x = xmin + (i-1)*h1;
for j = 1:n2+1
y = ymin + (j-1)*h2;
idx = (i-1)*(n2+1)+j;
P(:,idx) = [x, y];
node_idx(i, j) = idx;
end
end
for i = 1:n1
for j = 1:n2
quad_idx = j + (i-1)*n2;
tri_idx0 = 2*quad_idx-1;
tri_idx1 = 2*quad_idx;
idx = [node_idx(i, j), node_idx(i+1, j), node_idx(i+1, j+1), node_idx(i, j+1)];
T(:,tri_idx0) = [idx(1),idx(2),idx(4)];
T(:,tri_idx1) = [idx(4),idx(2),idx(3)];
end
end
end
function [Pb, Tb] = fem_info_mat(xmin, xmax, ymin, ymax, n1, n2)
half_h1 = (xmax-xmin)/n1/2;
half_h2 = (ymax-ymin)/n2/2;
node_num = (2*n1+1)*(2*n2+1);
elem_num = 2*n1*n2;
Pb = zeros(2, node_num);
Tb = zeros(6, elem_num);
node_idx = zeros(2*n1+1, 2*n2+1);
for i = 1:2*n1+1
x = xmin + (i-1)*half_h1;
for j = 1:2*n2+1
y = ymin + (j-1)*half_h2;
idx = j + (i-1)*(2*n2+1);
Pb(:, idx) = [x, y];
node_idx(i, j) = idx;
end
end
for i = 1:n1
for j = 1:n2
quad_idx = j + (i-1)*n2;
tri_idx0 = 2*quad_idx-1;
tri_idx1 = 2*quad_idx;
i0 = 2*i-1;
j0 = 2*j-1;
idx = zeros(1, 9);
idx(1) = node_idx(i0, j0);
idx(2) = node_idx(i0+1, j0);
idx(3) = node_idx(i0+2, j0);
idx(4) = node_idx(i0, j0+1);
idx(5) = node_idx(i0+1, j0+1);
idx(6) = node_idx(i0+2, j0+1);
idx(7) = node_idx(i0, j0+2);
idx(8) = node_idx(i0+1, j0+2);
idx(9) = node_idx(i0+2, j0+2);
Tb(:,tri_idx0) = [idx(1),idx(3),idx(7),idx(2),idx(5),idx(4)];
Tb(:,tri_idx1) = [idx(7),idx(3),idx(9),idx(5),idx(6),idx(8)];
end
end
end
function [bdry_edge, bdry_node] = boundary_info_mat(n1, n2, T, Tb)
bdry_edge = zeros(4, 2*(n1+n2));
bdry_node = zeros(2, 4*(n1+n2));
% Bottom
for k = 1:n1
edge_idx = k;
elem_idx = 1 + (k-1)*n2*2;
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(1, elem_idx);
bdry_edge(4, edge_idx) = T(2, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(1, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(4, elem_idx);
end
% Right
for k = 1:n2
edge_idx = k+n1;
elem_idx = 2*n2*(n1-1) + 2*k;
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(2, elem_idx);
bdry_edge(4, edge_idx) = T(3, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(2, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(5, elem_idx);
end
% Top
for k = 1:n1
edge_idx = k+n2+n1;
elem_idx = 2*n1*n2 - 2*n2*(k-1);
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(3, elem_idx);
bdry_edge(4, edge_idx) = T(1, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(3, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(6, elem_idx);
end
% Left
for k = 1:n2
edge_idx = k+2*n1+n2;
elem_idx = 2*n2 - (2*k-1);
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(3, elem_idx);
bdry_edge(4, edge_idx) = T(1, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(3, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(6, elem_idx);
end
end
function [ret] = grad_trial(basis, n, x, y)
ret = grad_test(basis, n, x, y);
end
function [ret] = grad_test(basis, n, x, y)
global P T Jac
[x0, y0] = affine_mapping(n, x, y);
gp = grad_test_ref(basis, x0, y0);
dpx0 = gp(1);
dpy0 = gp(2);
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
ret = [dpx0 * (y3-y1) + dpy0 * (y1-y2); dpx0 * (x1-x3) + dpy0 * (x2-x1)] / Jac(n);
end
function [ret] = grad_trial_ref(basis, x0, y0)
ret = grad_test_ref(basis, x0, y0);
end
function [ret] = grad_test_ref(basis, x0, y0)
switch(basis)
case 1
ret = [4*x0+4*y0-3; 4*y0+4*x0-3];
case 2
ret = [4*x0-1; 0];
case 3
ret = [0; 4*y0-1];
case 4
ret = [-8*x0-4*y0+4; -4*x0];
case 5
ret = [4*y0; 4*x0];
case 6
ret = [-4*y0; -8*y0-4*x0+4];
otherwise
ret = [0; 0];
end
end
function [ret] = trial(basis, n, x, y)
ret = test(basis, n, x, y);
end
function [ret] = test(basis, n, x, y)
[x0, y0] = affine_mapping(n, x, y);
ret = test_ref(basis, x0, y0);
end
function [ret] = trial_ref(basis, x0, y0)
ret = test_ref(basis, x0, y0);
end
function [ret] = test_ref(basis, x0, y0)
switch(basis)
case 1
ret = 2.0 * (x0 * x0 + y0 * y0) + 4.0 * x0 * y0 - 3.0 * (x0 + y0) + 1.0;
case 2
ret = x0 * (2.0 * x0 - 1.0);
case 3
ret = y0 * (2.0 * y0 - 1.0);
case 4
ret = 4.0 * x0 * (1.0 - x0 - y0);
case 5
ret = 4.0 * x0 * y0;
case 6
ret = 4.0 * y0 * (1.0 - x0 - y0);
otherwise
ret = 0.0;
end
end
function [x, y] = affine_mapping_back(n, x0, y0)
global P T
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
x = (x2-x1)*x0 + (x3-x1)*y0 + x1;
y = (y2-y1)*x0 + (y3-y1)*y0 + y1;
end
function [x0, y0] = affine_mapping(n, x, y)
global P T Jac
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
x0 = ((y3-y1)*(x-x1)-(x3-x1)*(y-y1))/Jac(n);
y0 = -((y2-y1)*(x-x1)-(x2-x1)*(y-y1))/Jac(n);
end
function [ret] = calc_elem_jacobi(P1, P2, P3)
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
ret = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
end
function [ret] = f(x, y)
global lambda mu
ret = zeros(2, 1);
ret(1) = -(lambda + 2 * mu) * (-pi^2 * sin(pi * x) * sin(pi * y)) - (lambda + mu) * ((2*x-1)*(2*y-1)) - mu * (-pi^2 * sin(pi * x) * sin(pi * y));
ret(2) = -(lambda + 2 * mu) * (2*x*(x-1)) - (lambda + mu) * (pi^2 * cos(pi * x) * cos(pi * y)) - mu * (2*y*(y-1));
end
function [ret] = strain(x, y)
global lambda mu
ret = zeros(2, 2);
gu = grad_u(x, y);
du = gu(1, 1) + gu(2, 2);
ret(1, 1) = lambda * du + 2 * mu * gu(1, 1);
ret(1, 2) = mu * (gu(1, 2) + gu(2, 1));
ret(2, 1) = mu * (gu(2, 1) + gu(1, 2));
ret(2, 2) = lambda * du + 2 * mu * gu(2, 2);
end
function [ret] = grad_u(x, y)
ret = zeros(2, 2);
ret(1, 1) = sin(pi * y) * cos(pi * x) * pi;
ret(1, 2) = sin(pi * x) * cos(pi * y) * pi;
ret(2, 1) = y*(y-1)*(2*x-1);
ret(2, 2) = x*(x-1)*(2*y-1);
end
function [ret] = u(x, y)
ret = zeros(2, 1);
ret(1) = sin(pi * x) * sin(pi * y);
ret(2) = x*(x-1)*y*(y-1);
end
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/yao_rong_wen/practice_fem.git
git@gitee.com:yao_rong_wen/practice_fem.git
yao_rong_wen
practice_fem
FEM-Basics
master

搜索帮助