1 Star 0 Fork 7

yao/FEM-Basics

forked from 吃瓜群众/FEM-Basics 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
HW7_linear.m 12.22 KB
一键复制 编辑 原始数据 按行查看 历史
吃瓜群众 提交于 2021-08-12 14:41 . Crank-Nicolson ok
clear; close all; clc;
N_CASE = 6;
h = zeros(1, N_CASE);
err = zeros(3, N_CASE);
for i = 1:N_CASE
N = 2^i;
theta = 0.5;
fprintf("\nCASE%d: theta=%g, ", i, theta);
[ch1, ch2, ce] = solve_2d_parabolic_pde(N, N, theta, 0.0, 1.0);
h(i) = sqrt(ch1*ch2);
err(1,i) = ce(1);
err(2,i) = ce(2);
err(3,i) = ce(3);
fprintf("\n |err|_inf=%e, |err|_L2=%e, |err|_H1=%e\n", err(1,i), err(2,i), err(3,i));
end
loglog(h, err(1,:), '-s')
hold on
loglog(h, err(2,:), '-s')
hold on
loglog(h, err(3,:), '-s')
grid on
legend('inf','L2','semi-H1','Location','northwest')
function [h1, h2, errnorm] = solve_2d_parabolic_pde(N1, N2, theta, t_start, t_end)
global P T Jac
x_min = 0.0; x_max = 2.0; h1 = (x_max-x_min)/N1;
y_min = 0.0; y_max = 1.0; h2 = (y_max-y_min)/N2;
dt = sqrt(h1 * h2);
fprintf("h1=%g, h2=%g, dt=%g\n", h1, h2, dt);
[P, T] = mesh_info_mat(x_min,x_max,y_min,y_max,N1,N2);
[boundary_edge, boundary_node] = boundary_info_mat(N1, N2, T);
Nlb = 3;
N = 2*N1*N2;
Nb = size(P, 2);
nbn = size(boundary_node, 2);
nbe = size(boundary_edge, 2);
% Element jacobian
Jac = zeros(N, 1);
for i = 1:N1
for j = 1:N2
quad_idx = (i-1)*N2 + j;
tri0_idx = 2*quad_idx - 1;
tri1_idx = tri0_idx + 1;
Jac(tri0_idx) = calc_elem_jacobi(P(:, T(1, tri0_idx)), P(:, T(2, tri0_idx)), P(:, T(3, tri0_idx)));
Jac(tri1_idx) = calc_elem_jacobi(P(:, T(1, tri1_idx)), P(:, T(2, tri1_idx)), P(:, T(3, tri1_idx)));
end
end
% Gauss quadrature coefficients
gq_tri_x0 = [1.0/3, 1.0/5, 3.0/5, 1.0/5];
gq_tri_y0 = [1.0/3, 1.0/5, 1.0/5, 3.0/5];
gq_tri_w = [-27.0/96, 25.0/96, 25.0/96, 25.0/96];
gq_tri_n = 4;
gq_lin_s0 = [-sqrt(3/5),0,sqrt(3/5)];
gq_lin_w = [5/9, 8/9, 5/9];
gq_lin_n = 3;
% Assemble the mass matrix
M = zeros(Nb, Nb);
for n = 1:N
for alpha = 1:Nlb % trial
for beta = 1:Nlb % test
i = T(beta, n);
j = T(alpha, n);
tmp = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
tmp = tmp + gq_tri_w(k) * trial_ref(alpha, x0, y0) * test_ref(beta, x0, y0);
end
tmp = tmp * abs(Jac(n));
M(i, j) = M(i, j) + tmp;
end
end
end
% Assemble the stiffness matrix
A = zeros(Nb, Nb);
for n = 1:N
for alpha = 1:Nlb
for beta = 1:Nlb
i = T(beta, n);
j = T(alpha, n);
tmp = 0.0;
for k = 1:gq_tri_n
[x, y] = affine_mapping_back(n, gq_tri_x0(k), gq_tri_y0(k));
tmp1 = grad_trial(alpha, n, x, y);
tmp2 = grad_test(beta, n, x, y);
tmp = tmp + gq_tri_w(k) * c(x, y) * dot(tmp1, tmp2);
end
tmp = tmp * abs(Jac(n));
A(i, j) = A(i, j) + tmp;
end
end
end
% In this case, the stiffness matrix does NOT change with time.
A_tilde = M / dt + theta * A;
A_res = M / dt - (1.0-theta) * A;
% Dirichlet Boundary
for k = 1:nbn
if boundary_node(1, k) == -1
i = boundary_node(2, k);
A_tilde(i, :) = 0;
A_tilde(i, i) = 1;
end
end
% Initialize
u_sol = zeros(Nb, 1);
for k = 1:Nb
u_sol(k) = u(P(1, k), P(2, k), t_start);
end
b_cur = zeros(Nb, 1);
for n = 1:N
for beta = 1:Nlb
i = T(beta, n);
tmp = 0.0;
for k = 1:gq_tri_n
[x, y] = affine_mapping_back(n, gq_tri_x0(k), gq_tri_y0(k));
tmp = tmp + gq_tri_w(k) * f(x, y, t_start) * test(beta, n, x, y);
end
tmp = tmp * abs(Jac(n));
b_cur(i) = b_cur(i) + tmp;
end
end
% Time-Marching
t_cur = t_start;
cnt = 0;
while t_cur < t_end
% To arrive at prescribed ending time exactly.
t_remain = t_end - t_cur;
if t_remain < dt
dt = t_remain;
A_tilde = M/dt + theta*A;
A_res = M/dt - (1.0-theta)*A;
% Dirichlet Boundary
for k = 1:nbn
if boundary_node(1, k) == -1
i = boundary_node(2, k);
A_tilde(i, :) = 0;
A_tilde(i, i) = 1;
end
end
end
t_next = t_cur + dt;
cnt = cnt + 1;
fprintf(" iter%4d: t_cur=%10g, t_next=%10g\n", cnt, t_cur, t_next);
% Assemble the load vector
b_next = zeros(Nb, 1);
for n = 1:N
for beta = 1:Nlb
i = T(beta, n);
tmp = 0.0;
for k = 1:gq_tri_n
[x, y] = affine_mapping_back(n, gq_tri_x0(k), gq_tri_y0(k));
tmp = tmp + gq_tri_w(k) * f(x, y, t_next) * test(beta, n, x, y);
end
tmp = tmp * abs(Jac(n));
b_next(i) = b_next(i) + tmp;
end
end
b_tilde = theta * b_next + (1.0-theta) * b_cur + A_res*u_sol;
% Dirichlet Boundary
for k = 1:nbn
if boundary_node(1, k) == -1
i = boundary_node(2, k);
b_tilde(i) = u(P(1, i), P(2, i), t_next);
end
end
% Solve
u_sol = A_tilde\b_tilde;
% Update
t_cur = t_next;
b_cur = b_next;
end
% Check
errnorm = zeros(1, 3); %inf, L2, semi-H1 respectively
for n = 1:N
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
[x, y] = affine_mapping_back(n, x0, y0);
w = 0.0;
for i = 1:Nlb
w = w + u_sol(T(i, n)) * trial_ref(i, x0, y0);
end
err = abs(w - u(x, y, t_end));
if err > errnorm(1)
errnorm(1) = err;
end
end
end
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
[x, y] = affine_mapping_back(n, x0, y0);
w = 0.0;
for i = 1:Nlb
w = w + u_sol(T(i, n)) * trial_ref(i, x0, y0);
end
err = (w - u(x, y, t_end))^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm(2) = errnorm(2) + res;
end
errnorm(2) = sqrt(errnorm(2));
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
[x, y] = affine_mapping_back(n, x0, y0);
w = zeros(2, 1);
for i = 1:Nlb
w = w + u_sol(T(i, n)) * grad_trial(i, n, x, y);
end
err = norm(w - grad_u(x, y, t_end))^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm(3) = errnorm(3) + res;
end
errnorm(3) = sqrt(errnorm(3));
end
function [ret] = grad_trial(basis, n, x, y)
ret = grad_test(basis, n, x, y);
end
function [ret] = grad_test(basis, n, x, y)
global P T Jac
[x0, y0] = affine_mapping(n, x, y);
gp = grad_test_ref(basis, x0, y0);
dpx0 = gp(1);
dpy0 = gp(2);
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
ret = [dpx0 * (y3-y1) + dpy0 * (y1-y2); dpx0 * (x1-x3) + dpy0 * (x2-x1)] / Jac(n);
end
function [ret] = grad_trial_ref(basis, x0, y0)
ret = grad_test_ref(basis, x0, y0);
end
function [ret] = grad_test_ref(basis, x0, y0)
switch(basis)
case 1
ret = [-1; -1];
case 2
ret = [1; 0];
case 3
ret = [0; 1];
otherwise
ret = [0; 0];
end
end
function [ret] = trial(basis, n, x, y)
ret = test(basis, n, x, y);
end
function [ret] = test(basis, n, x, y)
[x0, y0] = affine_mapping(n, x, y);
ret = test_ref(basis, x0, y0);
end
function [ret] = trial_ref(basis, x0, y0)
ret = test_ref(basis, x0, y0);
end
function [ret] = test_ref(basis, x0, y0)
switch(basis)
case 1
ret = 1.0 - x0 - y0;
case 2
ret = x0;
case 3
ret = y0;
otherwise
ret = 0;
end
end
function [x, y] = affine_mapping_back(n, x0, y0)
global P T
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
x = (x2-x1)*x0 + (x3-x1)*y0 + x1;
y = (y2-y1)*x0 + (y3-y1)*y0 + y1;
end
function [x0, y0] = affine_mapping(n, x, y)
global P T Jac
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
x0 = ((y3-y1)*(x-x1)-(x3-x1)*(y-y1))/Jac(n);
y0 = -((y2-y1)*(x-x1)-(x2-x1)*(y-y1))/Jac(n);
end
function [J] = calc_elem_jacobi(P1, P2, P3)
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
J = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
end
function [P, T] = mesh_info_mat(xmin, xmax, ymin, ymax, n1, n2)
h1 = (xmax-xmin)/n1;
h2 = (ymax-ymin)/n2;
P = zeros(2, (n1+1)*(n2+1));
T = zeros(3, 2*n1*n2);
node_idx = zeros(n1+1, n2+1);
for i = 1:n1+1
x = xmin + (i-1)*h1;
for j = 1:n2+1
y = ymin + (j-1)*h2;
idx = (i-1)*(n2+1)+j;
P(:,idx) = [x, y];
node_idx(i, j) = idx;
end
end
for i = 1:n1
for j = 1:n2
quad_idx = j + (i-1)*n2;
tri_idx0 = 2*quad_idx-1;
tri_idx1 = 2*quad_idx;
idx = [node_idx(i, j), node_idx(i+1, j), node_idx(i+1, j+1), node_idx(i, j+1)];
T(:,tri_idx0) = [idx(1),idx(2),idx(4)];
T(:,tri_idx1) = [idx(4),idx(2),idx(3)];
end
end
end
function [bdry_edge, bdry_node] = boundary_info_mat(n1, n2, T)
bdry_edge = zeros(4, 2*(n1+n2));
bdry_node = zeros(2, 2*(n1+n2));
% Bottom
for k = 1:n1
edge_idx = k;
elem_idx = 1 + (k-1)*n2*2;
node_idx = edge_idx;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(1, elem_idx);
bdry_edge(4, edge_idx) = T(2, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = T(1, elem_idx);
end
% Right
for k = 1:n2
edge_idx = k+n1;
elem_idx = 2*n2*(n1-1) + 2*k;
node_idx = edge_idx;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(2, elem_idx);
bdry_edge(4, edge_idx) = T(3, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = T(2, elem_idx);
end
% Top
for k = 1:n1
edge_idx = k+n2+n1;
elem_idx = 2*n1*n2 - 2*n2*(k-1);
node_idx = edge_idx;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(3, elem_idx);
bdry_edge(4, edge_idx) = T(1, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = T(3, elem_idx);
end
% Left
for k = 1:n2
edge_idx = k+2*n1+n2;
elem_idx = 2*n2 - (2*k-1);
node_idx = edge_idx;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(3, elem_idx);
bdry_edge(4, edge_idx) = T(1, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = T(3, elem_idx);
end
end
function [ret] = c(x, y, t)
ret = 2.0;
end
function [ret] = f(x, y, t)
ret = -3.0*exp(x+y+t);
end
function [ret] = u(x, y, t)
ret = exp(x+y+t);
end
function [ret] = grad_u(x, y, t)
gx = exp(x+y+t);
gy = exp(x+y+t);
ret = [gx; gy];
end
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/yao_rong_wen/practice_fem.git
git@gitee.com:yao_rong_wen/practice_fem.git
yao_rong_wen
practice_fem
FEM-Basics
master

搜索帮助