1 Star 0 Fork 7

yao/FEM-Basics

forked from 吃瓜群众/FEM-Basics 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
HW11.m 24.41 KB
一键复制 编辑 原始数据 按行查看 历史
吃瓜群众 提交于 2021-10-05 20:43 . backward-Euler ok
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
clear; close all; clc;
N_CASE = 6;
h = zeros(1, N_CASE);
err_velocity = zeros(3, N_CASE);
err_pressure = zeros(3, N_CASE);
for i = 1:N_CASE
N = 2^i;
h(i) = 1.0/N;
xMin = 0.0;
xMax = 1.0;
yMin = -0.25;
yMax = 0.0;
N1 = round((xMax-xMin)/h(i));
N2 = round((yMax-yMin)/h(i));
h1 = (xMax-xMin)/N1;
h2 = (yMax-yMin)/N2;
t0 = 0.0;
t1 = 1.0;
theta = 1.0;
dt0 = 8*power(h(i), 3);
loop_cnt = ceil((t1 - t0)/dt0);
dt = (t1 - t0)/loop_cnt;
fprintf("\nCASE%d: h=1/%d, hx=%g, hy=%g, dt=%g, theta=%g\n", i, N, h1, h2, dt, theta);
[err_velocity(:, i), err_pressure(:, i)] = solve_2d_unsteady_stokes(xMin, xMax, yMin, yMax, N1, N2, t0, t1, loop_cnt, theta);
fprintf("\n Velocity: |err|_inf=%e, |err|_L2=%e, |err|_H1=%e\n", err_velocity(1,i), err_velocity(2,i), err_velocity(3,i));
fprintf("\n Pressure: |err|_inf=%e, |err|_L2=%e, |err|_H1=%e\n", err_pressure(1,i), err_pressure(2,i), err_pressure(3,i));
end
loglog(h, err_velocity(1,:), '-s')
hold on
loglog(h, err_velocity(2,:), '-s')
hold on
loglog(h, err_velocity(3,:), '-s')
grid on
loglog(h, err_pressure(1,:), '-+')
hold on
loglog(h, err_pressure(2,:), '-+')
hold on
loglog(h, err_pressure(3,:), '-+')
grid on
loglog([1e0, 1e-2], [1e1, 1e-1])
grid on
loglog([1e0, 1e-2], [1e0, 1e-4])
grid on
loglog([1e0, 1e-2], [1e-1, 1e-7])
grid on
legend('Velocity Inf', 'Velocity L2', 'Velocity H1-semi', 'Pressure Inf', 'Pressure L2', 'Pressure H1-semi', '1st-order slope', '2nd-order slope', '3rd-order slope', 'Location', 'southeast')
%% Coefficient assembly
function [errnorm_velocity, errnorm_pressure] = solve_2d_unsteady_stokes(x_min, x_max, y_min, y_max, N1, N2, t_start, t_end, n_iter, theta)
global P T Pb Tb Jac
global mu
mu = 2.0;
dt = (t_end - t_start) / n_iter;
[P, T] = mesh_info_mat(x_min,x_max,y_min,y_max,N1,N2);
[Pb, Tb] = fem_info_mat(x_min,x_max,y_min,y_max,N1,N2);
[boundary_edge, boundary_node] = boundary_info_mat(N1, N2, T, Tb);
Nlb_velocity = size(Tb, 1); % Num of local basis functions for velocity
Nb_velocity = size(Pb, 2); % Num of global basis functions for velocity
Nlb_pressure = size(T, 1); % Num of local basis functions for pressure
Nb_pressure = size(P, 2); % Num of global basis functions for pressure
N = size(T,2); % Num of mesh/FEM elements
nbn = size(boundary_node, 2);
nbe = size(boundary_edge, 2);
% Element jacobian
Jac = zeros(N, 1);
for i = 1:N
p1 = P(:, T(1, i));
p2 = P(:, T(2, i));
p3 = P(:, T(3, i));
Jac(i) = calc_elem_jacobi(p1, p2, p3);
end
% Gauss quadrature coordinates & coefficients
gq_tri_n = 4;
gq_tri_x0 = [1.0/3, 1.0/5, 3.0/5, 1.0/5];
gq_tri_y0 = [1.0/3, 1.0/5, 1.0/5, 3.0/5];
gq_tri_w = [-27.0/96, 25.0/96, 25.0/96, 25.0/96];
gq_tri_x = zeros(N, gq_tri_n);
gq_tri_y = zeros(N, gq_tri_n);
for n = 1:N
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
[gq_tri_x(n, k), gq_tri_y(n, k)] = affine_mapping_back(n, x0, y0);
end
end
% Assemble the stiffness matrix
A1 = sparse(Nb_velocity, Nb_velocity);
A2 = sparse(Nb_velocity, Nb_velocity);
A3 = sparse(Nb_velocity, Nb_velocity);
for n = 1:N
for alpha = 1:Nlb_velocity % trial
j = Tb(alpha, n);
for beta = 1:Nlb_velocity % test
i = Tb(beta, n);
tmp = zeros(3, 1);
for k = 1:gq_tri_n
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
gpj = grad_velocity_trial(alpha, n, x, y);
gpi = grad_velocity_test(beta, n, x, y);
tmp(1) = tmp(1) + gq_tri_w(k) * mu * gpj(1) * gpi(1);
tmp(2) = tmp(2) + gq_tri_w(k) * mu * gpj(2) * gpi(2);
tmp(3) = tmp(3) + gq_tri_w(k) * mu * gpj(1) * gpi(2);
end
tmp = tmp * abs(Jac(n));
A1(i, j) = A1(i, j) + tmp(1);
A2(i, j) = A2(i, j) + tmp(2);
A3(i, j) = A3(i, j) + tmp(3);
end
end
end
A5 = sparse(Nb_velocity, Nb_pressure);
A6 = sparse(Nb_velocity, Nb_pressure);
for n = 1:N
for alpha = 1:Nlb_pressure % trial
j = T(alpha, n);
for beta = 1:Nlb_velocity % test
i = Tb(beta, n);
tmp5 = 0.0;
tmp6 = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
psij = pressure_trial_ref(alpha, x0, y0);
gphii = grad_velocity_test(beta, n, x, y);
tmp5 = tmp5 + gq_tri_w(k) * -psij * gphii(1);
tmp6 = tmp6 + gq_tri_w(k) * -psij * gphii(2);
end
tmp5 = tmp5 * abs(Jac(n));
tmp6 = tmp6 * abs(Jac(n));
A5(i, j) = A5(i, j) + tmp5;
A6(i, j) = A6(i, j) + tmp6;
end
end
end
A01 = sparse(Nb_pressure, Nb_pressure);
A = [2*A1+A2, A3, A5; A3.', 2*A2+A1, A6; A5.', A6.', A01];
% Assemble the mass matrix
Me = sparse(Nb_velocity, Nb_velocity);
for n = 1:N
for alpha = 1:Nlb_velocity % trial
j = Tb(alpha, n);
for beta = 1:Nlb_velocity % test
i = Tb(beta, n);
tmp = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
phii = velocity_test_ref(beta, x0, y0);
phij = velocity_trial_ref(alpha, x0, y0);
tmp = tmp + gq_tri_w(k) * phij * phii;
end
tmp = tmp * abs(Jac(n));
Me(i, j) = Me(i, j) + tmp;
end
end
end
A02 = sparse(Nb_velocity, Nb_pressure);
A03 = sparse(Nb_velocity, Nb_velocity);
M = [Me, A03, A02; A03, Me, A02; A02.', A02.', A01];
A_tilde = M / dt + theta * A;
A_res = M / dt - (1-theta) * A;
% Initialize
u_sol = zeros(2, Nb_velocity);
p_sol = zeros(1, Nb_pressure);
for k = 1:Nb_velocity
u_sol(:, k) = u(Pb(1, k), Pb(2, k), t_start);
end
for k = 1:Nb_pressure
p_sol(k) = p(P(1, k), P(2, k), t_start);
end
x_cur = [u_sol(1, :).'; u_sol(2, :).'; p_sol.'];
% Initial load vector
b1 = zeros(Nb_velocity, 1);
b2 = zeros(Nb_velocity, 1);
bO = zeros(Nb_pressure, 1);
for n = 1:N
for beta = 1:Nlb_velocity % test
i = Tb(beta, n);
tmp = zeros(2, 1);
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
fval = f(x, y, t_start);
phii = velocity_test_ref(beta, x0, y0);
tmp(1) = tmp(1) + gq_tri_w(k) * fval(1) * phii;
tmp(2) = tmp(2) + gq_tri_w(k) * fval(2) * phii;
end
tmp = tmp * abs(Jac(n));
b1(i) = b1(i) + tmp(1);
b2(i) = b2(i) + tmp(2);
end
end
b_cur = [b1; b2; bO];
% Dirichlet Boundary for velocity
for k = 1:nbn
if boundary_node(1, k) == -1
i = boundary_node(2, k);
A_tilde(i, :) = 0;
A_tilde(i, i) = 1;
A_tilde(Nb_velocity + i, :) = 0;
A_tilde(Nb_velocity + i, Nb_velocity + i) = 1;
end
end
% Dirichlet Boundary for pressure
node_flag = false(1, Nb_pressure);
for k = 1:nbe
if boundary_edge(1, k) == -1
n_end1 = boundary_edge(3, k);
n_end2 = boundary_edge(4, k);
if(node_flag(n_end1) == false)
node_flag(n_end1) = true;
i = n_end1;
A_tilde(2*Nb_velocity+i, :) = 0;
A_tilde(2*Nb_velocity+i, 2*Nb_velocity+i) = 1;
end
if(node_flag(n_end2) == false)
node_flag(n_end2) = true;
i = n_end2;
A_tilde(2*Nb_velocity+i, :) = 0;
A_tilde(2*Nb_velocity+i, 2*Nb_velocity+i) = 1;
end
end
end
% Time-Marching
t_cur = t_start;
cnt = 0;
while cnt < n_iter
t_next = t_cur + dt;
cnt = cnt + 1;
fprintf(" iter%4d: t_cur=%10g, t_next=%10g\n", cnt, t_cur, t_next);
% Assemble the load vector
b1 = zeros(Nb_velocity, 1);
b2 = zeros(Nb_velocity, 1);
for n = 1:N
for beta = 1:Nlb_velocity % test
i = Tb(beta, n);
tmp = zeros(2, 1);
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
fval = f(x, y, t_next);
phii = velocity_test_ref(beta, x0, y0);
tmp(1) = tmp(1) + gq_tri_w(k) * fval(1) * phii;
tmp(2) = tmp(2) + gq_tri_w(k) * fval(2) * phii;
end
tmp = tmp * abs(Jac(n));
b1(i) = b1(i) + tmp(1);
b2(i) = b2(i) + tmp(2);
end
end
b_next = [b1; b2; bO];
b_tilde = theta * b_next + (1.0-theta) * b_cur + A_res * x_cur;
% Dirichlet Boundary for velocity
for k = 1:nbn
if boundary_node(1, k) == -1
i = boundary_node(2, k);
g = u(Pb(1, i), Pb(2, i), t_next);
b_tilde(i) = g(1);
b_tilde(Nb_velocity + i) = g(2);
end
end
% Dirichlet Boundary for pressure
node_flag = false(1, Nb_pressure);
for k = 1:nbe
if boundary_edge(1, k) == -1
n_end1 = boundary_edge(3, k);
n_end2 = boundary_edge(4, k);
if(node_flag(n_end1) == false)
node_flag(n_end1) = true;
i = n_end1;
g = p(P(1, i), P(2, i), t_next);
b_tilde(2*Nb_velocity+i) = g;
end
if(node_flag(n_end2) == false)
node_flag(n_end2) = true;
i = n_end2;
g = p(P(1, i), P(2, i), t_next);
b_tilde(2*Nb_velocity+i) = g;
end
end
end
% Solve
x_next = A_tilde\b_tilde;
for i = 1:Nb_velocity
u_sol(1, i) = x_next(i);
u_sol(2, i) = x_next(Nb_velocity+i);
end
for i = 1:Nb_pressure
p_sol(i) = x_next(2*Nb_velocity+i);
end
% Update
t_cur = t_next;
b_cur = b_next;
x_cur = x_next;
end
% Check
errnorm_velocity = zeros(1, 3); %inf, L2, semi-H1 respectively
for n = 1:N
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 1);
for i = 1:Nlb_velocity
w = w + u_sol(:, Tb(i, n)) * velocity_trial_ref(i, x0, y0);
end
err = norm(w - u(x, y, t_end), Inf);
if err > errnorm_velocity(1)
errnorm_velocity(1) = err;
end
end
end
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 1);
for i = 1:Nlb_velocity
w = w + u_sol(:, Tb(i, n)) * velocity_trial_ref(i, x0, y0);
end
err = norm(w - u(x, y, t_end))^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm_velocity(2) = errnorm_velocity(2) + res;
end
errnorm_velocity(2) = sqrt(errnorm_velocity(2));
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 2);
for i = 1:Nlb_velocity
w = w + u_sol(:, Tb(i, n)) * grad_velocity_trial(i, n, x, y).';
end
err = norm(w - grad_u(x, y, t_end), 'fro')^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm_velocity(3) = errnorm_velocity(3) + res;
end
errnorm_velocity(3) = sqrt(errnorm_velocity(3));
errnorm_pressure = zeros(1, 3); %inf, L2, semi-H1 respectively
for n = 1:N
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = 0.0;
for i = 1:Nlb_pressure
w = w + p_sol(T(i, n)) * pressure_trial_ref(i, x0, y0);
end
err = abs(w - p(x, y, t_end));
if err > errnorm_pressure(1)
errnorm_pressure(1) = err;
end
end
end
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x0 = gq_tri_x0(k);
y0 = gq_tri_y0(k);
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = 0.0;
for i = 1:Nlb_pressure
w = w + p_sol(T(i, n)) * pressure_trial_ref(i, x0, y0);
end
err = (w - p(x, y, t_end))^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm_pressure(2) = errnorm_pressure(2) + res;
end
errnorm_pressure(2) = sqrt(errnorm_pressure(2));
for n = 1:N
res = 0.0;
for k = 1:gq_tri_n
x = gq_tri_x(n, k);
y = gq_tri_y(n, k);
w = zeros(2, 1);
for i = 1:Nlb_pressure
w = w + p_sol(T(i, n)) * grad_pressure_trial(i, n, x, y);
end
err = norm(w - grad_p(x, y, t_end))^2;
res = res + gq_tri_w(k) * err;
end
res = res * abs(Jac(n));
errnorm_pressure(3) = errnorm_pressure(3) + res;
end
errnorm_pressure(3) = sqrt(errnorm_pressure(3));
end
%% Mesh generation
function [P, T] = mesh_info_mat(xmin, xmax, ymin, ymax, n1, n2)
h1 = (xmax-xmin)/n1;
h2 = (ymax-ymin)/n2;
P = zeros(2, (n1+1)*(n2+1));
T = zeros(3, 2*n1*n2);
node_idx = zeros(n1+1, n2+1);
for i = 1:n1+1
x = xmin + (i-1)*h1;
for j = 1:n2+1
y = ymin + (j-1)*h2;
idx = (i-1)*(n2+1)+j;
P(:,idx) = [x, y];
node_idx(i, j) = idx;
end
end
for i = 1:n1
for j = 1:n2
quad_idx = j + (i-1)*n2;
tri_idx0 = 2*quad_idx-1;
tri_idx1 = 2*quad_idx;
idx = [node_idx(i, j), node_idx(i+1, j), node_idx(i+1, j+1), node_idx(i, j+1)];
T(:,tri_idx0) = [idx(1),idx(2),idx(4)];
T(:,tri_idx1) = [idx(4),idx(2),idx(3)];
end
end
end
function [Pb, Tb] = fem_info_mat(xmin, xmax, ymin, ymax, n1, n2)
half_h1 = (xmax-xmin)/n1/2;
half_h2 = (ymax-ymin)/n2/2;
node_num = (2*n1+1)*(2*n2+1);
elem_num = 2*n1*n2;
Pb = zeros(2, node_num);
Tb = zeros(6, elem_num);
node_idx = zeros(2*n1+1, 2*n2+1);
for i = 1:2*n1+1
x = xmin + (i-1)*half_h1;
for j = 1:2*n2+1
y = ymin + (j-1)*half_h2;
idx = j + (i-1)*(2*n2+1);
Pb(:, idx) = [x, y];
node_idx(i, j) = idx;
end
end
for i = 1:n1
for j = 1:n2
quad_idx = j + (i-1)*n2;
tri_idx0 = 2*quad_idx-1;
tri_idx1 = 2*quad_idx;
i0 = 2*i-1;
j0 = 2*j-1;
idx = zeros(1, 9);
idx(1) = node_idx(i0, j0);
idx(2) = node_idx(i0+1, j0);
idx(3) = node_idx(i0+2, j0);
idx(4) = node_idx(i0, j0+1);
idx(5) = node_idx(i0+1, j0+1);
idx(6) = node_idx(i0+2, j0+1);
idx(7) = node_idx(i0, j0+2);
idx(8) = node_idx(i0+1, j0+2);
idx(9) = node_idx(i0+2, j0+2);
Tb(:,tri_idx0) = [idx(1),idx(3),idx(7),idx(2),idx(5),idx(4)];
Tb(:,tri_idx1) = [idx(7),idx(3),idx(9),idx(5),idx(6),idx(8)];
end
end
end
function [bdry_edge, bdry_node] = boundary_info_mat(n1, n2, T, Tb)
bdry_edge = zeros(4, 2*(n1+n2));
bdry_node = zeros(2, 4*(n1+n2));
% Bottom
for k = 1:n1
edge_idx = k;
elem_idx = 1 + (k-1)*n2*2;
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(1, elem_idx);
bdry_edge(4, edge_idx) = T(2, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(1, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(4, elem_idx);
end
% Right
for k = 1:n2
edge_idx = k+n1;
elem_idx = 2*n2*(n1-1) + 2*k;
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(2, elem_idx);
bdry_edge(4, edge_idx) = T(3, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(2, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(5, elem_idx);
end
% Top
for k = 1:n1
edge_idx = k+n2+n1;
elem_idx = 2*n1*n2 - 2*n2*(k-1);
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(3, elem_idx);
bdry_edge(4, edge_idx) = T(1, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(3, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(6, elem_idx);
end
% Left
for k = 1:n2
edge_idx = k+2*n1+n2;
elem_idx = 2*n2 - (2*k-1);
node_idx = 2*edge_idx-1;
bdry_edge(1, edge_idx) = -1;
bdry_edge(2, edge_idx) = elem_idx;
bdry_edge(3, edge_idx) = T(3, elem_idx);
bdry_edge(4, edge_idx) = T(1, elem_idx);
bdry_node(1, node_idx) = -1;
bdry_node(2, node_idx) = Tb(3, elem_idx);
bdry_node(1, node_idx+1) = -1;
bdry_node(2, node_idx+1) = Tb(6, elem_idx);
end
end
%% Taylor-Hood Finite Element
function [ret] = grad_pressure_trial(basis, n, x, y)
ret = grad_pressure_test(basis, n, x, y);
end
function [ret] = grad_pressure_test(basis, n, x, y)
global P T Jac
[x0, y0] = affine_mapping(n, x, y);
gp = grad_pressure_test_ref(basis, x0, y0);
dpx0 = gp(1);
dpy0 = gp(2);
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
ret = [dpx0 * (y3-y1) + dpy0 * (y1-y2); dpx0 * (x1-x3) + dpy0 * (x2-x1)] / Jac(n);
end
function [ret] = pressure_trial(basis, n, x, y)
ret = pressure_test(basis, n, x, y);
end
function [ret] = pressure_test(basis, n, x, y)
[x0, y0] = affine_mapping(n, x, y);
ret = pressure_test_ref(basis, x0, y0);
end
function [ret] = grad_pressure_trial_ref(basis, x0, y0)
ret = grad_pressure_test_ref(basis, x0, y0);
end
function [ret] = grad_pressure_test_ref(basis, x0, y0)
switch(basis)
case 1
ret = [-1; -1];
case 2
ret = [1; 0];
case 3
ret = [0; 1];
otherwise
ret = [0; 0];
end
end
function [ret] = pressure_trial_ref(basis, x0, y0)
ret = pressure_test_ref(basis, x0, y0);
end
function [ret] = pressure_test_ref(basis, x0, y0)
switch(basis)
case 1
ret = 1.0 - x0 - y0;
case 2
ret = x0;
case 3
ret = y0;
otherwise
ret = 0;
end
end
function [ret] = grad_velocity_trial(basis, n, x, y)
ret = grad_velocity_test(basis, n, x, y);
end
function [ret] = grad_velocity_test(basis, n, x, y)
global P T Jac
[x0, y0] = affine_mapping(n, x, y);
gp = grad_velocity_test_ref(basis, x0, y0);
dpx0 = gp(1);
dpy0 = gp(2);
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
ret = [dpx0 * (y3-y1) + dpy0 * (y1-y2); dpx0 * (x1-x3) + dpy0 * (x2-x1)] / Jac(n);
end
function [ret] = velocity_trial(basis, n, x, y)
ret = velocity_test(basis, n, x, y);
end
function [ret] = velocity_test(basis, n, x, y)
[x0, y0] = affine_mapping(n, x, y);
ret = velocity_test_ref(basis, x0, y0);
end
function [ret] = grad_velocity_trial_ref(basis, x0, y0)
ret = grad_velocity_test_ref(basis, x0, y0);
end
function [ret] = grad_velocity_test_ref(basis, x0, y0)
switch(basis)
case 1
ret = [4*x0+4*y0-3; 4*y0+4*x0-3];
case 2
ret = [4*x0-1; 0];
case 3
ret = [0; 4*y0-1];
case 4
ret = [-8*x0-4*y0+4; -4*x0];
case 5
ret = [4*y0; 4*x0];
case 6
ret = [-4*y0; -8*y0-4*x0+4];
otherwise
ret = [0; 0];
end
end
function [ret] = velocity_trial_ref(basis, x0, y0)
ret = velocity_test_ref(basis, x0, y0);
end
function [ret] = velocity_test_ref(basis, x0, y0)
switch(basis)
case 1
ret = 2.0 * (x0 * x0 + y0 * y0) + 4.0 * x0 * y0 - 3.0 * (x0 + y0) + 1.0;
case 2
ret = x0 * (2.0 * x0 - 1.0);
case 3
ret = y0 * (2.0 * y0 - 1.0);
case 4
ret = 4.0 * x0 * (1.0 - x0 - y0);
case 5
ret = 4.0 * x0 * y0;
case 6
ret = 4.0 * y0 * (1.0 - x0 - y0);
otherwise
ret = 0.0;
end
end
%% Mapping
function [x, y] = affine_mapping_back(n, x0, y0)
global P T
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
x = (x2-x1)*x0 + (x3-x1)*y0 + x1;
y = (y2-y1)*x0 + (y3-y1)*y0 + y1;
end
function [x0, y0] = affine_mapping(n, x, y)
global P T Jac
P1 = P(:, T(1, n));
P2 = P(:, T(2, n));
P3 = P(:, T(3, n));
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
x0 = ((y3-y1)*(x-x1)-(x3-x1)*(y-y1))/Jac(n);
y0 = -((y2-y1)*(x-x1)-(x2-x1)*(y-y1))/Jac(n);
end
function [ret] = calc_elem_jacobi(P1, P2, P3)
x1 = P1(1); y1 = P1(2);
x2 = P2(1); y2 = P2(2);
x3 = P3(1); y3 = P3(2);
ret = (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
end
%% Manufactured solution
function [ret] = f(x, y, t)
global mu
ret = zeros(2, 1);
ret(1) = -2 * mu * (x^2 + y^2 + 0.5 * exp(-y)) * cos(2*pi*t) + pi^2 * cos(pi * x) * cos(2 * pi * y) * cos(2*pi*t) - 2 * pi * (x^2 * y^2 + exp(-y)) * sin(2*pi*t);
ret(2) = (mu * (4 * x * y - pi^3 * sin(pi * x)) + 2 * pi * (2 - pi * sin(pi * x)) * sin(2 * pi * y)) * cos(2*pi*t) - 2 * pi * sin(2*pi*t) * (-2.0/3 * x * y^3 + 2 - pi * sin(pi * x));
end
function [ret] = grad_u(x, y, t)
ret = zeros(2, 2);
ret(1, 1) = (2 * x * y^2) * cos(2*pi*t);
ret(1, 2) = (x^2 * 2 * y - exp(-y)) * cos(2*pi*t);
ret(2, 1) = (-2.0/3 * y^3 - pi^2 * cos(pi * x)) * cos(2*pi*t);
ret(2, 2) = (-2.0 * x * y^2) * cos(2*pi*t);
end
function [ret] = grad_p(x, y, t)
ret = zeros(2, 1);
ret(1) = - (-pi * cos(pi * x) * pi) * cos(2 * pi * y) * cos(2 * pi * t);
ret(2) = -(2 - pi * sin(pi * x)) * (-sin(2 * pi * y) * 2 * pi) * cos(2 * pi * t);
end
function [ret] = u(x, y, t)
ret = zeros(2, 1);
ret(1) = (x^2 * y^2 + exp(-y)) * cos(2*pi*t);
ret(2) = (-2.0/3 * x * y^3 + 2 - pi * sin(pi * x)) * cos(2*pi*t);
end
function [ret] = p(x, y, t)
ret = -(2 - pi * sin(pi * x)) * cos(2 * pi * y) * cos(2 * pi * t);
end
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Matlab
1
https://gitee.com/yao_rong_wen/practice_fem.git
git@gitee.com:yao_rong_wen/practice_fem.git
yao_rong_wen
practice_fem
FEM-Basics
master

搜索帮助