1 Star 0 Fork 11

YaNan/Yolov5_DeepSort_Pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
Dockerfile 1.68 KB
一键复制 编辑 原始数据 按行查看 历史
mikel.brostrom 提交于 2023-07-17 21:45 . flake8
# build the image and tag it for easier later reference
# docker build -t mikel-brostrom/yolov5_strongsort_osnet .
# Base image: Nvidia PyTorch https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
FROM nvcr.io/nvidia/pytorch:22.11-py3
# Update image
RUN apt update
# Install pip packages
COPY requirements.txt .
RUN python -m pip install --upgrade pip setuptools wheel
RUN pip uninstall -y torch torchvision
RUN pip install --no-cache -r requirements.txt
# Create working directory
RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app
# Clone with submodules
RUN git clone --recurse-submodules https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet.git /usr/src/app
# ------------------------------------------------------------------------------
# A docker container exits when its main process finishes, which in this case is bash.
# This means that the containers will stop once you exit them and everything will be lost.
# To avoid this use detach mode. More on this in the next paragraph
#
# - run interactively with all GPUs accessible:
#
# docker run -it --gpus all mikel-brostrom/yolov5_strongsort_osnet bash
#
# - run interactively with first and third GPU accessible:
#
# docker run -it --gpus '"device=0, 2"' mikel-brostrom/yolov5_strongsort_osnet bash
# Run in detached mode (if you exit the container it won't stop)
#
# -create a detached docker container from an image:
#
# docker run -it --gpus all -d mikel-brostrom/yolov5_strongsort_osnet
#
# - this will return a <container_id> number which makes it accessible. Access it by:
#
# docker exec -it <container_id>
#
# - When you are done with the container stop it by:
#
# docker stop <container_id>
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/ya2an/Yolov5_DeepSort_Pytorch.git
git@gitee.com:ya2an/Yolov5_DeepSort_Pytorch.git
ya2an
Yolov5_DeepSort_Pytorch
Yolov5_DeepSort_Pytorch
master

搜索帮助