代码拉取完成,页面将自动刷新
同步操作将从 Secure_DisOpt&Cont/基于交替方向乘子法的VRPTW问题分解模式 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import numpy as np
Topology = np.mat([[0,175,363,134,216,252,316,189,277,66,103,156,260],
[175,0,517,55,50,110,396,292,223,128,162,122,394],
[363,517,0,485,557,517,215,239,320,405,359,416,124],
[134,55,485,0,94,120,393,288,231,86,121,131,386],
[216,50,557,94,0,102,437,332,264,168,202,162,434],
[252,110,517,120,102,0,362,293,205,189,161,123,395],
[316,396,215,393,437,362,0,128,188,314,279,295,145],
[189,292,239,288,332,293,128,0,152,209,175,190,97],
[277,223,320,231,264,205,188,152,0,213,185,131,240],
[66,128,405,86,168,189,314,209,213,0,40,93,303],
[103,162,359,121,202,161,279,175,185,40,0,65,257],
[156,122,416,131,162,123,295,190,131,93,65,0,292],
[260,394,124,386,434,395,145,97,240,303,257,292,0]])
cities=["南京","无锡","徐州","常州","苏州","南通","连云港","淮安","盐城","镇江","扬州","泰州","宿迁"]
#source,end,value
sev = []
for i in range(Topology.shape[0]):
for j in range(i+1,Topology.shape[1]):
item = [i,j,Topology[i,j]]
sev.append(item)
#由小到大排序
def takeThird(elem):
return elem[2]
sev.sort(key=takeThird)
EndNode = [-1 for i in range(Topology.shape[0])]
#用于判断环
def FindEd(x):
if EndNode[x] == -1:
return x
else:
return FindEd(EndNode[x])
#Kruskal
num = 0
result = 0
New_sev = []
for item in sev:
snode = FindEd(item[0])
enode = FindEd(item[1])
if snode != enode:
num += 1
result += item[2]
EndNode[snode] = enode
New_sev.append(item)
if num == Topology.shape[0]-1:
break
#print(num)
print(result)
#print(New_sev)
for item in New_sev:
print(cities[item[0]],'--',cities[item[1]],':',item[2])
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。