代码拉取完成,页面将自动刷新
import os.path
import math
import argparse
import time
import random
import numpy as np
from collections import OrderedDict
import logging
from torch.utils.data import DataLoader
import torch
from utils import utils_logger
from utils import utils_image as util
from utils import utils_option as option
from utils import utils_sisr as sisr
from data.select_dataset import define_Dataset
from models.select_model import define_Model
'''
# --------------------------------------------
# training code for SRMD
# --------------------------------------------
# Kai Zhang (cskaizhang@gmail.com)
# github: https://github.com/cszn/KAIR
# https://github.com/cszn/SRMD
#
# Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
# --------------------------------------------
# https://github.com/xinntao/BasicSR
# --------------------------------------------
'''
def main(json_path='options/train_srmd.json'):
'''
# ----------------------------------------
# Step--1 (prepare opt)
# ----------------------------------------
'''
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default=json_path, help='Path to option JSON file.')
opt = option.parse(parser.parse_args().opt, is_train=True)
util.mkdirs((path for key, path in opt['path'].items() if 'pretrained' not in key))
# ----------------------------------------
# update opt
# ----------------------------------------
# -->-->-->-->-->-->-->-->-->-->-->-->-->-
init_iter, init_path_G = option.find_last_checkpoint(opt['path']['models'], net_type='G')
opt['path']['pretrained_netG'] = init_path_G
current_step = init_iter
border = opt['scale']
# --<--<--<--<--<--<--<--<--<--<--<--<--<-
# ----------------------------------------
# save opt to a '../option.json' file
# ----------------------------------------
option.save(opt)
# ----------------------------------------
# return None for missing key
# ----------------------------------------
opt = option.dict_to_nonedict(opt)
# ----------------------------------------
# configure logger
# ----------------------------------------
logger_name = 'train'
utils_logger.logger_info(logger_name, os.path.join(opt['path']['log'], logger_name+'.log'))
logger = logging.getLogger(logger_name)
logger.info(option.dict2str(opt))
# ----------------------------------------
# calculate PCA projection matrix
# ----------------------------------------
pca_matrix_path = os.path.join('kernels', 'srmd_pca_pytorch.mat')
if not os.path.exists(pca_matrix_path):
logger.info('calculating PCA projection matrix...')
sisr.cal_pca_matrix(path=pca_matrix_path, ksize=15, l_max=10.0, dim_pca=15, num_samples=5000)
logger.info('done!')
else:
logger.info('loading PCA projection matrix...')
# ----------------------------------------
# seed
# ----------------------------------------
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
logger.info('Random seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
'''
# ----------------------------------------
# Step--2 (creat dataloader)
# ----------------------------------------
'''
# ----------------------------------------
# 1) create_dataset
# 2) creat_dataloader for train and test
# ----------------------------------------
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
train_set = define_Dataset(dataset_opt)
train_size = int(math.ceil(len(train_set) / dataset_opt['dataloader_batch_size']))
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(len(train_set), train_size))
train_loader = DataLoader(train_set,
batch_size=dataset_opt['dataloader_batch_size'],
shuffle=dataset_opt['dataloader_shuffle'],
num_workers=dataset_opt['dataloader_num_workers'],
drop_last=True,
pin_memory=True)
elif phase == 'test':
test_set = define_Dataset(dataset_opt)
test_loader = DataLoader(test_set, batch_size=1,
shuffle=False, num_workers=1,
drop_last=False, pin_memory=True)
else:
raise NotImplementedError("Phase [%s] is not recognized." % phase)
'''
# ----------------------------------------
# Step--3 (initialize model)
# ----------------------------------------
'''
model = define_Model(opt)
# if opt['merge_bn'] and current_step > opt['merge_bn_startpoint']:
# logger.info('^_^ -----merging bnorm----- ^_^')
# model.merge_bnorm_test()
logger.info(model.info_network())
model.init_train()
logger.info(model.info_params())
'''
# ----------------------------------------
# Step--4 (main training)
# ----------------------------------------
'''
for epoch in range(1000000): # keep running
for i, train_data in enumerate(train_loader):
current_step += 1
# -------------------------------
# 1) update learning rate
# -------------------------------
model.update_learning_rate(current_step)
# -------------------------------
# 2) feed patch pairs
# -------------------------------
model.feed_data(train_data)
# -------------------------------
# 3) optimize parameters
# -------------------------------
model.optimize_parameters(current_step)
# -------------------------------
# merge bnorm
# -------------------------------
# if opt['merge_bn'] and opt['merge_bn_startpoint'] == current_step:
# logger.info('^_^ -----merging bnorm----- ^_^')
# model.merge_bnorm_train()
# model.print_network()
# -------------------------------
# 4) training information
# -------------------------------
if current_step % opt['train']['checkpoint_print'] == 0:
logs = model.current_log() # such as loss
message = '<epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format(epoch, current_step, model.current_learning_rate())
for k, v in logs.items(): # merge log information into message
message += '{:s}: {:.3e} '.format(k, v)
logger.info(message)
# -------------------------------
# 5) save model
# -------------------------------
if current_step % opt['train']['checkpoint_save'] == 0:
logger.info('Saving the model.')
model.save(current_step)
# -------------------------------
# 6) testing
# -------------------------------
if current_step % opt['train']['checkpoint_test'] == 0:
avg_psnr = 0.0
idx = 0
for test_data in test_loader:
idx += 1
image_name_ext = os.path.basename(test_data['L_path'][0])
img_name, ext = os.path.splitext(image_name_ext)
img_dir = os.path.join(opt['path']['images'], img_name)
util.mkdir(img_dir)
model.feed_data(test_data)
model.test()
visuals = model.current_visuals()
E_img = util.tensor2uint(visuals['E'])
H_img = util.tensor2uint(visuals['H'])
# -----------------------
# save estimated image E
# -----------------------
save_img_path = os.path.join(img_dir, '{:s}_{:d}.png'.format(img_name, current_step))
util.imsave(E_img, save_img_path)
# -----------------------
# calculate PSNR
# -----------------------
current_psnr = util.calculate_psnr(E_img, H_img, border=border)
logger.info('{:->4d}--> {:>10s} | {:<4.2f}dB'.format(idx, image_name_ext, current_psnr))
avg_psnr += current_psnr
avg_psnr = avg_psnr / idx
# testing log
logger.info('<epoch:{:3d}, iter:{:8,d}, Average PSNR : {:<.2f}dB\n'.format(epoch, current_step, avg_psnr))
logger.info('Saving the final model.')
model.save('latest')
logger.info('End of training.')
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。