代码拉取完成,页面将自动刷新
require 'torch'
require 'unsup'
require 'nn'
require 'image'
require 'paths'
require 'lib/AdaptiveInstanceNormalization'
require 'lib/utils'
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-style', '',
'File path to the style image, or multiple style images separated by commas if you want to do style interpolation or spatial control')
cmd:option('-styleDir', '', 'Directory path to a batch of style images')
cmd:option('-content', '', 'File path to the content image')
cmd:option('-contentDir', '', 'Directory path to a batch of content images')
cmd:option('-vgg', 'models/vgg_normalised.t7', 'Path to the VGG network')
cmd:option('-decoder', 'models/decoder.t7', 'Path to the decoder')
-- Additional options
cmd:option('-contentSize', 512,
'New (minimum) size for the content image, keeping the original size if set to 0')
cmd:option('-styleSize', 512,
'New (minimum) size for the style image, keeping the original size if set to 0')
cmd:option('-crop', false, 'If true, center crop both content and style image before resizing')
cmd:option('-saveExt', 'jpg', 'The extension name of the output image')
cmd:option('-gpu', 0, 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
cmd:option('-outputDir', 'output', 'Directory to save the output image(s)')
cmd:option('-saveOriginal', false,
'If true, also save the original content and style images in the output directory')
-- Advanced options
cmd:option('-preserveColor', false, 'If true, preserve color of the content image')
cmd:option('-alpha', 1, 'The weight that controls the degree of stylization. Should be between 0 and 1')
cmd:option('-styleInterpWeights', '', 'The weight for blending the style of multiple style images')
cmd:option('-mask', '', 'Mask to apply spatial control, assume to be the path to a binary mask of the same size as content image')
opt = cmd:parse(arg)
print(opt)
if opt.gpu >= 0 then
require 'cudnn'
require 'cunn'
end
assert(opt.content ~= '' or opt.contentDir ~= '', 'Either --content or --contentDir should be given.')
assert(opt.style ~= '' or opt.styleDir ~= '', 'Either --style or --styleDir should be given.')
assert(opt.content == '' or opt.contentDir == '', '--content and --contentDir cannot both be given.')
assert(opt.style == '' or opt.styleDir == '', '--style and --styleDir cannot both be given.')
assert(paths.filep(opt.decoder), 'Decoder ' .. opt.decoder .. ' does not exist.')
vgg = torch.load(opt.vgg)
for i=53,32,-1 do
vgg:remove(i)
end
local adain = nn.AdaptiveInstanceNormalization(vgg:get(#vgg-1).nOutputPlane)
decoder = torch.load(opt.decoder)
if opt.gpu >= 0 then
cutorch.setDevice(opt.gpu+1)
vgg = cudnn.convert(vgg, cudnn):cuda()
-- vgg:cuda()
adain:cuda()
-- decoder = cudnn.convert(decoder, cudnn):cuda()
decoder:cuda()
else
vgg:float()
adain:float()
decoder:float()
end
local function styleTransfer(content, style)
if opt.gpu >= 0 then
content = content:cuda()
style = style:cuda()
else
content = content:float()
style = style:float()
end
styleFeature = vgg:forward(style):clone()
contentFeature = vgg:forward(content):clone()
if opt.mask ~= '' then -- spatial control
assert(styleFeature:size(1) == 2) -- expect two style images
local styleFeatureFG = styleFeature[1]
local styleFeatureBG = styleFeature[2]
local C, H, W = contentFeature:size(1), contentFeature:size(2), contentFeature:size(3)
local maskResized = image.scale(mask, W, H, 'simple')
local maskView = maskResized:view(-1)
local fgmask = torch.LongTensor(torch.find(maskView, 1)) -- foreground indices
local bgmask = torch.LongTensor(torch.find(maskView, 0)) -- background indices
local contentFeatureView = contentFeature:view(C, -1)
local contentFeatureFG = contentFeatureView:index(2, fgmask):view(C, fgmask:nElement(), 1) -- C * #fg
local contentFeatureBG = contentFeatureView:index(2, bgmask):view(C, bgmask:nElement(), 1) -- C * #bg
targetFeatureFG = adain:forward({contentFeatureFG, styleFeatureFG}):clone():squeeze()
targetFeatureBG = adain:forward({contentFeatureBG, styleFeatureBG}):squeeze()
targetFeature = contentFeatureView:clone():zero() -- C * (H*W)
targetFeature:indexCopy(2, fgmask ,targetFeatureFG)
targetFeature:indexCopy(2, bgmask ,targetFeatureBG)
targetFeature = targetFeature:viewAs(contentFeature)
elseif opt.styleInterpWeights ~= '' then -- style interpolation
assert(styleFeature:size(1) == #styleInterpWeights, '-styleInterpWeights and -style must have the same number of elements')
targetFeature = contentFeature:clone():zero()
for i=1,styleFeature:size(1) do
targetFeature:add(styleInterpWeights[i], adain:forward({contentFeature, styleFeature[i]}))
end
else
targetFeature = adain:forward({contentFeature, styleFeature})
end
targetFeature = targetFeature:squeeze()
targetFeature = opt.alpha * targetFeature + (1 - opt.alpha) * contentFeature
return decoder:forward(targetFeature)
end
local function styleTransferModified(content, styleFeature)
if opt.gpu >= 0 then
content = content:cuda()
else
content = content:float()
end
contentFeature = vgg:forward(content):clone()
if opt.mask ~= '' then -- spatial control
assert(styleFeature:size(1) == 2) -- expect two style images
local styleFeatureFG = styleFeature[1]
local styleFeatureBG = styleFeature[2]
local C, H, W = contentFeature:size(1), contentFeature:size(2), contentFeature:size(3)
local maskResized = image.scale(mask, W, H, 'simple')
local maskView = maskResized:view(-1)
local fgmask = torch.LongTensor(torch.find(maskView, 1)) -- foreground indices
local bgmask = torch.LongTensor(torch.find(maskView, 0)) -- background indices
local contentFeatureView = contentFeature:view(C, -1)
local contentFeatureFG = contentFeatureView:index(2, fgmask):view(C, fgmask:nElement(), 1) -- C * #fg
local contentFeatureBG = contentFeatureView:index(2, bgmask):view(C, bgmask:nElement(), 1) -- C * #bg
targetFeatureFG = adain:forward({contentFeatureFG, styleFeatureFG}):clone():squeeze()
targetFeatureBG = adain:forward({contentFeatureBG, styleFeatureBG}):squeeze()
targetFeature = contentFeatureView:clone():zero() -- C * (H*W)
targetFeature:indexCopy(2, fgmask ,targetFeatureFG)
targetFeature:indexCopy(2, bgmask ,targetFeatureBG)
targetFeature = targetFeature:viewAs(contentFeature)
elseif opt.styleInterpWeights ~= '' then -- style interpolation
assert(styleFeature:size(1) == #styleInterpWeights, '-styleInterpWeights and -style must have the same number of elements')
targetFeature = contentFeature:clone():zero()
for i=1,styleFeature:size(1) do
targetFeature:add(styleInterpWeights[i], adain:forward({contentFeature, styleFeature[i]}))
end
else
targetFeature = adain:forward({contentFeature, styleFeature})
end
targetFeature = targetFeature:squeeze()
targetFeature = opt.alpha * targetFeature + (1 - opt.alpha) * contentFeature
return decoder:forward(targetFeature)
end
print('Creating save folder at ' .. opt.outputDir)
paths.mkdir(opt.outputDir)
if opt.mask ~= '' then
mask = image.load(opt.mask, 1, 'float') -- binary mask
end
local contentPaths = {}
local stylePaths = {}
if opt.content ~= '' then -- use a single content image
table.insert(contentPaths, opt.content)
else -- use a batch of content images
assert(opt.contentDir ~= '', "Either opt.contentDir or opt.content should be non-empty!")
contentPaths = extractImageNamesRecursive(opt.contentDir)
end
if opt.style ~= '' then
style_image_list = opt.style:split(',')
if #style_image_list == 1 then
style_image_list = style_image_list[1]
end
table.insert(stylePaths, style_image_list)
else -- use a batch of style images
assert(opt.styleDir ~= '', "Either opt.styleDir or opt.style should be non-empty!")
stylePaths = extractImageNamesRecursive(opt.styleDir)
end
if opt.styleInterpWeights ~= '' then
styleInterpWeights = opt.styleInterpWeights:split(',')
local styleInterpWeightsSum = torch.Tensor(styleInterpWeights):sum()
for i=1,#styleInterpWeights do -- normalize weights so they sum to 1
styleInterpWeights[i] = styleInterpWeights[i] / styleInterpWeightsSum
end
end
local numContent = #contentPaths
local numStyle = #stylePaths
print("# Content images: " .. numContent)
print("# Style images: " .. numStyle)
if opt.preserveColor then
for i=1,numContent do
local contentPath = contentPaths[i]
local contentExt = paths.extname(contentPath)
local contentImg = image.load(contentPath, 3, 'float')
local contentName = paths.basename(contentPath, contentExt)
local contentImg = sizePreprocess(contentImg, opt.crop, opt.contentSize)
for j=1,numStyle do -- generate a transferred image for each (content, style) pair
local stylePath = stylePaths[j]
if type(stylePath) == "table" then -- style blending
styleImg = {}
styleName = ''
for s=1,#stylePath do
local style = image.load(stylePath[s], 3, 'float')
styleExt = paths.extname(stylePath[s])
styleName = styleName .. '_' .. paths.basename(stylePath[s], styleExt)
style = sizePreprocess(style, opt.crop, opt.styleSize)
style = coral(style, contentImg)
style = style:add_dummy()
table.insert(styleImg, style)
end
styleImg = torch.cat(styleImg, 1)
styleName = styleName:sub(2)
else
styleExt = paths.extname(stylePath)
styleImg = image.load(stylePath, 3, 'float')
styleImg = sizePreprocess(styleImg, opt.crop, opt.styleSize)
styleImg = coral(styleImg, contentImg)
styleName = paths.basename(stylePath, styleExt)
end
local output = styleTransfer(contentImg, styleImg)
local savePath = paths.concat(opt.outputDir, contentName .. '_stylized_' .. styleName .. '.' .. opt.saveExt)
print('Output image saved at: ' .. savePath)
image.save(savePath, output)
if opt.saveOriginal then
-- also save the original images
image.save(paths.concat(opt.outputDir, contentName .. '.' .. contentExt), contentImg)
image.save(paths.concat(opt.outputDir, styleName .. '.' .. styleExt), styleImg)
end
end
end
else
for j=1,numStyle do
local stylePath = stylePaths[j]
if type(stylePath) == "table" then -- style blending
styleImg = {}
styleName = ''
for s=1,#stylePath do
local style = image.load(stylePath[s], 3, 'float')
styleExt = paths.extname(stylePath[s])
styleName = styleName .. '_' .. paths.basename(stylePath[s], styleExt)
style = sizePreprocess(style, opt.crop, opt.styleSize)
style = style:add_dummy()
table.insert(styleImg, style)
end
styleImg = torch.cat(styleImg, 1)
styleName = styleName:sub(2)
else
styleExt = paths.extname(stylePath)
styleImg = image.load(stylePath, 3, 'float')
styleImg = sizePreprocess(styleImg, opt.crop, opt.styleSize)
styleName = paths.basename(stylePath, styleExt)
end
if opt.gpu >= 0 then
styleImg = styleImg:cuda()
else
styleImg = styleImg:float()
end
styleFeature = vgg:forward(styleImg):clone() -- calculate style feature only once to improve speed
for i=1,numContent do -- generate a transferred image for each (content, style) pair
local contentPath = contentPaths[i]
local contentExt = paths.extname(contentPath)
local contentImg = image.load(contentPath, 3, 'float')
local contentName = paths.basename(contentPath, contentExt)
local contentImg = sizePreprocess(contentImg, opt.crop, opt.contentSize)
local output = styleTransferModified(contentImg, styleFeature)
local savePath = paths.concat(opt.outputDir, contentName .. '_stylized_' .. styleName .. '.' .. opt.saveExt)
print('Output image saved at: ' .. savePath)
image.save(savePath, output)
if opt.outputDirOriginal then
-- also save the original images
image.save(paths.concat(opt.outputDir, contentName .. '.' .. contentExt), contentImg)
image.save(paths.concat(opt.outputDir, styleName .. '.' .. styleExt), styleImg)
end
end
end
end
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。