代码拉取完成,页面将自动刷新
同步操作将从 SwagyChill/pytorch-captcha-recognition 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# -*- coding: UTF-8 -*-
import torch.nn as nn
import captcha_setting
# CNN Model (2 conv layer)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.Dropout(0.5), # drop 50% of the neuron
nn.ReLU(),
nn.MaxPool2d(2))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.Dropout(0.5), # drop 50% of the neuron
nn.ReLU(),
nn.MaxPool2d(2))
self.layer3 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.Dropout(0.5), # drop 50% of the neuron
nn.ReLU(),
nn.MaxPool2d(2))
self.fc = nn.Sequential(
nn.Linear((captcha_setting.IMAGE_WIDTH//8)*(captcha_setting.IMAGE_HEIGHT//8)*64, 1024),
nn.Dropout(0.5), # drop 50% of the neuron
nn.ReLU())
self.rfc = nn.Sequential(
nn.Linear(1024, captcha_setting.MAX_CAPTCHA*captcha_setting.ALL_CHAR_SET_LEN),
)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
out = self.rfc(out)
return out
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。