代码拉取完成,页面将自动刷新
#coding:utf-8
import matplotlib.pyplot as plt
import math
from pylab import *
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
import numpy as np
N = 23 #总节点数
c=[0 ,math.pi/2 ,math.pi ,3*math.pi/2, math.pi/4, 3*math.pi/4, 5*math.pi/4 , 7*math.pi/4 , math.pi/2 , math.pi, 3*math.pi/2 ,0 , 3*math.pi/4 ,5*math.pi/4 ,7*math.pi/4, math.pi/4 , math.pi, 3*math.pi/2, 0 , math.pi/2 ,7*math.pi/4 ,math.pi/4, 3*math.pi/4 ]
w = [2 , 2.8 , 3,3.2 , 2 , 2.8 , 3 , 3.2 ,2 , 2.8 , 3, 3.2 , 2 , 2.8 ,3, 3.2 , 2 ,2.8 , 3 , 3.2 , 2, 2 ,1.5 ]
'''
w = [0,2,3,3,4,4,2,3,3,4,4,2,3,3,4,4,2,3,3,4,4,2,2,3,4,1] #自然频率向量,w[0] = 0占位
c = [0,0,math.pi / 2,math.pi,3 * math.pi / 2,0,
0,math.pi / 2,math.pi,3 * math.pi / 2,0,0,
math.pi / 2,math.pi,3 * math.pi / 2,0,0,math.pi / 2,
math.pi,3 * math.pi / 2,0,0,math.pi / 2,math.pi,3 * math.pi / 2,
0,0,math.pi / 2,math.pi,3 * math.pi / 2,0,0] #初始相位,c[0] = 0占位
'''
k0 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0 ,0.5, 0.5 , 0.5 , 0 ,0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0, 0, 0 , 0 , 0 ,0.2, 0 ,0,],
[0.5 , 0 , 0 , 0 ,0 , 0 , 0 , 0 ,0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 ,0 , 0 , 0 , 0 , 0 ,0 ,0,] ,
[0.5 ,0 , 0 , 0, 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 ,0 , 0, 0, 0 , 0 , 0 , 0 ,0 , 0 , 0 , 0 ] ,
[0.5 ,0 , 0 , 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 , 0, 0, 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0 , 0.5 , 0.5 , 0.5 , 0 , 0 ,0 , 0, 0, 0 , 0 , 0 , 0 , 0 ,0 ,0 , 0.2 ,0 ,0 ],
[ 0 ,0 , 0 , 0, 0.5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0, 0 , 0 , 0 , 0 ,0 , 0 , 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0.5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0, 0 , 0 , 0 , 0 ,0 , 0 , 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0.5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 0, 0, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0 , 0 , 0.5 , 0.5 , 0.5, 0, 0 , 0, 0 , 0 , 0 , 0, 0 , 0 ,0.2 ,0] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0.5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0, 0 , 0 , 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0.5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 , 0 , 0 , 0 , 0 , 0 ],
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0.5 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,0 ,0 , 0 , 0 , 0 , 0 , 0 ],
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0 , 0.5 , 0.5 , 0.5 , 0 , 0, 0 , 0 , 0, 0.2, 0] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0.5 ,0 , 0 , 0 , 0 ,0 ,0 ,0 ,0 ,0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0.5 ,0 ,0 , 0 , 0 ,0 ,0 ,0 ,0 ,0 , 0 ],
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0.5 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0 ,0 , 0 ],
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0 , 0 ,0 , 0 , 0 , 1, 1, 1, 0, 0 , 0.5 ] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0 , 0 ,0 , 0 , 1 , 0, 0, 0, 0, 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0 , 0 ,0 , 0 , 1 , 0, 0, 0, 0, 0 , 0 ] ,
[ 0 ,0 , 0 , 0, 0 , 0 , 0, 0, 0, 0, 0, 0,0 , 0 ,0 , 0 , 1 , 0, 0, 0, 0, 0 , 0 ] ,
[ 0.2, 0 ,0, 0 , 0.2 ,0 ,0 , 0, 0, 0, 0,0 , 0 ,0 , 0 , 0, 0 , 0, 0 , 0, 0 , 0 ,0.5 ] ,
[ 0 , 0 , 0, 0 , 0 , 0 , 0 , 0, 0.2 ,0, 0,0 , 0.2, 0,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0.5 ] ,
[ 0 ,0 , 0, 0, 0, 0, 0 , 0, 0, 0 ,0,0 , 0 , 0 , 0 ,0 , 0.5 , 0 , 0 , 0, 0.5, 0.5 , 0 ]
]
k1 = [
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5],
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.5],
[0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0.5],
[1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0.5],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0],
[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,1]] #i和j的耦合矩阵,独立分组,1-25,0占位
k2 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0.5],
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0.5],
[0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,2,0,0,0.5],
[1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,2,0,0.5],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2],
[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,1]] #i和j的耦合矩阵,完全分散分组
k3 = [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0.5],
[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0.5],
[0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,2,0,0,0.5],
[1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,2,0,0.5],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0],
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0],
[2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0],
[0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,1,1,1,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,1,0,1,1,2],
[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,0,0,0,1]] #i和j的耦合矩阵,不完全分散分组
#r = (float(1) / N )* x #目标函数
n = [i + 1 for i in range(22)] #目标划分,24个值,1-24
t = [j for j in range(1000)]
ci = 0
C = []
C.append(c)
for d in range(1100):
for i in n :
for j in range(22):
cj = c[j + 1] - c[i]
ci += k3[i][j + 1] * math.sin(cj)
cii = ci + w[i]
h = [0.01 * cii + z for z in c]
C.append(h)
c = h
def r_function(u):
y1 = 0
y2 = 0
y12 = 0
y22 = 0
r = []
for x in range(1000):
for ul in u:
y1 += math.cos(C[x][ul])
y2 += math.sin(C[x][ul])
y12 = y1 ** 2
y22 = y2 ** 2
r.append((float(1) / N ) * ((y12 + y22) ** 0.5))
return r
'''
r1 = r_function([1,2,3,4,5])
r2 = r_function([6,7,8,9,10])
r3 = r_function([11,12,13,14,15,])
r4 = r_function([16,17,18,19,20])
r5 = r_function([21,22,23,24,25])
'''
r1 = r_function([1,2,3,4,5])
r2 = r_function([6,7,8,9])
r3 = r_function([10,11,12,13])
r4 = r_function([14,15,16,17])
r5 = r_function([18,19,20])
ax = subplot(111) #注意:一般都在ax中设置,不再plot中设置
ymajorLocator = MultipleLocator(0.1) #将y轴主刻度标签设置为0.5的倍数
ax.yaxis.set_major_locator(ymajorLocator)
plt.plot(t, r1, marker='o', color='green', label='1')
plt.plot(t, r2, marker='D',color='red', label='2')
plt.plot(t, r3, marker='+',color='skyblue', label='3')
plt.plot(t, r4, marker='h', color='blue', label='4')
plt.plot(t, r5, marker='_',color='yellow', label='5')
#plt.plot(t, r6, color='red', label='6')
plt.legend() # 显示图例
plt.xlabel('iteration times')
plt.ylabel('rate')
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。