# FAST-LIVO2 **Repository Path**: wuxinju/FAST-LIVO2 ## Basic Information - **Project Name**: FAST-LIVO2 - **Description**: No description available - **Primary Language**: Unknown - **License**: GPL-2.0 - **Default Branch**: main - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-09-24 - **Last Updated**: 2025-09-24 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # FAST-LIVO2 ## FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry ### 📢 News - 🔓 **2025-01-23**: Code released! - 🎉 **2024-10-01**: Accepted by **T-RO '24**! - 🚀 **2024-07-02**: Conditionally accepted. ### 📬 Contact For further inquiries or assistance, please contact [zhengcr@connect.hku.hk](mailto:zhengcr@connect.hku.hk). ## 1. Introduction FAST-LIVO2 is an efficient and accurate LiDAR-inertial-visual fusion localization and mapping system, demonstrating significant potential for real-time 3D reconstruction and onboard robotic localization in severely degraded environments. **Developer**: [Chunran Zheng 郑纯然](https://github.com/xuankuzcr)
### 1.1 Related video Our accompanying video is now available on [**Bilibili**](https://www.bilibili.com/video/BV1Ezxge7EEi) and [**YouTube**](https://youtu.be/6dF2DzgbtlY). ### 1.2 Related paper [FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry](https://arxiv.org/pdf/2408.14035) [FAST-LIVO: Fast and Tightly-coupled Sparse-Direct LiDAR-Inertial-Visual Odometry](https://arxiv.org/pdf/2203.00893) [FAST-Calib: LiDAR-Camera Extrinsic Calibration in One Second](https://www.arxiv.org/pdf/2507.17210) ### 1.3 Our hard-synchronized equipment We open-source our handheld device, including CAD files, synchronization scheme, STM32 source code, wiring instructions, and sensor ROS driver. Access these resources at this repository: [**LIV_handhold**](https://github.com/xuankuzcr/LIV_handhold). ### 1.4 Our associate dataset: FAST-LIVO2-Dataset Our associate dataset [**FAST-LIVO2-Dataset**](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/zhengcr_connect_hku_hk/ErdFNQtjMxZOorYKDTtK4ugBkogXfq1OfDm90GECouuIQA?e=KngY9Z) used for evaluation is also available online. ### 1.5 Our LiDAR-camera calibration method The [**FAST-Calib**](https://github.com/hku-mars/FAST-Calib) toolkit is recommended. Its output extrinsic parameters can be directly filled into the YAML file. ## 2. Prerequisited ### 2.1 Ubuntu and ROS Ubuntu 18.04~20.04. [ROS Installation](http://wiki.ros.org/ROS/Installation). ### 2.2 PCL && Eigen && OpenCV PCL>=1.8, Follow [PCL Installation](https://pointclouds.org/). Eigen>=3.3.4, Follow [Eigen Installation](https://eigen.tuxfamily.org/index.php?title=Main_Page). OpenCV>=4.2, Follow [Opencv Installation](http://opencv.org/). ### 2.3 Sophus Sophus Installation for the non-templated/double-only version. ```bash git clone https://github.com/strasdat/Sophus.git cd Sophus git checkout a621ff mkdir build && cd build && cmake .. make sudo make install ``` ### 2.4 Vikit Vikit contains camera models, some math and interpolation functions that we need. Vikit is a catkin project, therefore, download it into your catkin workspace source folder. ```bash # Different from the one used in fast-livo1 cd catkin_ws/src git clone https://github.com/xuankuzcr/rpg_vikit.git ``` ## 3. Build Clone the repository and catkin_make: ``` cd ~/catkin_ws/src git clone https://github.com/hku-mars/FAST-LIVO2 cd ../ catkin_make source ~/catkin_ws/devel/setup.bash ``` ## 4. Run our examples Download our collected rosbag files via OneDrive ([**FAST-LIVO2-Dataset**](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/zhengcr_connect_hku_hk/ErdFNQtjMxZOorYKDTtK4ugBkogXfq1OfDm90GECouuIQA?e=KngY9Z)). ``` roslaunch fast_livo mapping_avia.launch rosbag play YOUR_DOWNLOADED.bag ``` ## 5. License The source code of this package is released under the [**GPLv2**](http://www.gnu.org/licenses/) license. For commercial use, please contact me at and Prof. Fu Zhang at to discuss an alternative license.