1 Star 4 Fork 0

记忆之城/中文车牌检测和识别

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
export.py 5.94 KB
一键复制 编辑 原始数据 按行查看 历史
记忆之城 提交于 2022-09-15 10:27 . first commit
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
Usage:
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
"""
import argparse
import sys
import time
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
import onnx
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
parser.add_argument('--img_size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--dynamic', action='store_true', default=False, help='enable dynamic axis in onnx model')
parser.add_argument('--onnx2pb', action='store_true', default=False, help='export onnx to pb')
parser.add_argument('--onnx_infer', action='store_true', default=True, help='onnx infer test')
#=======================TensorRT=================================
parser.add_argument('--onnx2trt', action='store_true', default=False, help='export onnx to tensorrt')
parser.add_argument('--fp16_trt', action='store_true', default=False, help='fp16 infer')
#================================================================
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model
delattr(model.model[-1], 'anchor_grid')
model.model[-1].anchor_grid=[torch.zeros(1)] * 3 # nl=3 number of detection layers
model.model[-1].export_cat = True
model.eval()
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
if isinstance(m, models.common.ShuffleV2Block):#shufflenet block nn.SiLU
for i in range(len(m.branch1)):
if isinstance(m.branch1[i], nn.SiLU):
m.branch1[i] = SiLU()
for i in range(len(m.branch2)):
if isinstance(m.branch2[i], nn.SiLU):
m.branch2[i] = SiLU()
y = model(img) # dry run
# ONNX export
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
f = opt.weights.replace('.pt', '.onnx') # filename
model.fuse() # only for ONNX
input_names=['input']
output_names=['output']
torch.onnx.export(model, img, f, verbose=False, opset_version=12,
input_names=input_names,
output_names=output_names,
dynamic_axes = {'input': {0: 'batch'},
'output': {0: 'batch'}
} if opt.dynamic else None)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
print('ONNX export success, saved as %s' % f)
# Finish
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
# onnx infer
if opt.onnx_infer:
import onnxruntime
import numpy as np
providers = ['CPUExecutionProvider']
session = onnxruntime.InferenceSession(f, providers=providers)
im = img.cpu().numpy().astype(np.float32) # torch to numpy
y_onnx = session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: im})[0]
print("pred's shape is ",y_onnx.shape)
print("max(|torch_pred - onnx_pred|) =",abs(y.cpu().numpy()-y_onnx).max())
# TensorRT export
if opt.onnx2trt:
from torch2trt.trt_model import ONNX_to_TRT
print('\nStarting TensorRT...')
ONNX_to_TRT(onnx_model_path=f,trt_engine_path=f.replace('.onnx', '.trt'),fp16_mode=opt.fp16_trt)
# PB export
if opt.onnx2pb:
print('download the newest onnx_tf by https://github.com/onnx/onnx-tensorflow/tree/master/onnx_tf')
from onnx_tf.backend import prepare
import tensorflow as tf
outpb = f.replace('.onnx', '.pb') # filename
# strict=True maybe leads to KeyError: 'pyfunc_0', check: https://github.com/onnx/onnx-tensorflow/issues/167
tf_rep = prepare(onnx_model, strict=False) # prepare tf representation
tf_rep.export_graph(outpb) # export the model
out_onnx = tf_rep.run(img) # onnx output
# check pb
with tf.Graph().as_default():
graph_def = tf.GraphDef()
with open(outpb, "rb") as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name="")
with tf.Session() as sess:
init = tf.global_variables_initializer()
input_x = sess.graph.get_tensor_by_name(input_names[0]+':0') # input
outputs = []
for i in output_names:
outputs.append(sess.graph.get_tensor_by_name(i+':0'))
out_pb = sess.run(outputs, feed_dict={input_x: img})
print(f'out_pytorch {y}')
print(f'out_onnx {out_onnx}')
print(f'out_pb {out_pb}')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/woshirencai/License-plate-detection-and-recognition.git
git@gitee.com:woshirencai/License-plate-detection-and-recognition.git
woshirencai
License-plate-detection-and-recognition
中文车牌检测和识别
master

搜索帮助