3 Star 21 Fork 3

r yon/langchain-ChatGLM pdf

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
webui.py 6.47 KB
一键复制 编辑 原始数据 按行查看 历史
imClumsyPanda 提交于 2023-04-14 23:42 . update webui.py
import gradio as gr
import os
import shutil
from chains.local_doc_qa import LocalDocQA
from configs.model_config import *
def get_file_list():
if not os.path.exists("content"):
return []
return [f for f in os.listdir("content")]
file_list = get_file_list()
embedding_model_dict_list = list(embedding_model_dict.keys())
llm_model_dict_list = list(llm_model_dict.keys())
local_doc_qa = LocalDocQA()
def upload_file(file):
if not os.path.exists("content"):
os.mkdir("content")
filename = os.path.basename(file.name)
shutil.move(file.name, "content/" + filename)
# file_list首位插入新上传的文件
file_list.insert(0, filename)
return gr.Dropdown.update(choices=file_list, value=filename)
def get_answer(query, vs_path, history):
if vs_path:
resp, history = local_doc_qa.get_knowledge_based_answer(
query=query, vs_path=vs_path, chat_history=history)
else:
history = history + [[None, "请先加载文件后,再进行提问。"]]
return history, ""
def update_status(history, status):
history = history + [[None, status]]
print(status)
return history
def init_model():
try:
local_doc_qa.init_cfg()
return """模型已成功加载,请选择文件后点击"加载文件"按钮"""
except:
return """模型未成功加载,请重新选择后点击"加载模型"按钮"""
def reinit_model(llm_model, embedding_model, llm_history_len, top_k, history):
try:
local_doc_qa.init_cfg(llm_model=llm_model,
embedding_model=embedding_model,
llm_history_len=llm_history_len,
top_k=top_k)
model_status = """模型已成功重新加载,请选择文件后点击"加载文件"按钮"""
except:
model_status = """模型未成功重新加载,请重新选择后点击"加载模型"按钮"""
return history + [[None, model_status]]
def get_vector_store(filepath, history):
if local_doc_qa.llm and local_doc_qa.llm:
vs_path = local_doc_qa.init_knowledge_vector_store(["content/" + filepath])
if vs_path:
file_status = "文件已成功加载,请开始提问"
else:
file_status = "文件未成功加载,请重新上传文件"
else:
file_status = "模型未完成加载,请先在加载模型后再导入文件"
vs_path = None
return vs_path, history + [[None, file_status]]
block_css = """.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}"""
webui_title = """
# 🎉langchain-ChatGLM WebUI🎉
👍 [https://github.com/imClumsyPanda/langchain-ChatGLM](https://github.com/imClumsyPanda/langchain-ChatGLM)
"""
init_message = """欢迎使用 langchain-ChatGLM Web UI,开始提问前,请依次如下 3 个步骤:
1. 选择语言模型、Embedding 模型及相关参数后点击"重新加载模型",并等待加载完成提示
2. 上传或选择已有文件作为本地知识文档输入后点击"重新加载文档",并等待加载完成提示
3. 输入要提交的问题后,点击回车提交 """
model_status = init_model()
with gr.Blocks(css=block_css) as demo:
vs_path, file_status, model_status = gr.State(""), gr.State(""), gr.State(model_status)
gr.Markdown(webui_title)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot([[None, init_message], [None, model_status.value]],
elem_id="chat-box",
show_label=False).style(height=750)
query = gr.Textbox(show_label=False,
placeholder="请输入提问内容,按回车进行提交",
).style(container=False)
with gr.Column(scale=1):
llm_model = gr.Radio(llm_model_dict_list,
label="LLM 模型",
value=LLM_MODEL,
interactive=True)
llm_history_len = gr.Slider(0,
10,
value=3,
step=1,
label="LLM history len",
interactive=True)
embedding_model = gr.Radio(embedding_model_dict_list,
label="Embedding 模型",
value=EMBEDDING_MODEL,
interactive=True)
top_k = gr.Slider(1,
20,
value=6,
step=1,
label="向量匹配 top k",
interactive=True)
load_model_button = gr.Button("重新加载模型")
# with gr.Column():
with gr.Tab("select"):
selectFile = gr.Dropdown(file_list,
label="content file",
interactive=True,
value=file_list[0] if len(file_list) > 0 else None)
with gr.Tab("upload"):
file = gr.File(label="content file",
file_types=['.txt', '.md', '.docx', '.pdf']
) # .style(height=100)
load_file_button = gr.Button("加载文件")
load_model_button.click(reinit_model,
show_progress=True,
inputs=[llm_model, embedding_model, llm_history_len, top_k, chatbot],
outputs=chatbot
)
# 将上传的文件保存到content文件夹下,并更新下拉框
file.upload(upload_file,
inputs=file,
outputs=selectFile)
load_file_button.click(get_vector_store,
show_progress=True,
inputs=[selectFile, chatbot],
outputs=[vs_path, chatbot],
)
query.submit(get_answer,
[query, vs_path, chatbot],
[chatbot, query],
)
demo.queue(concurrency_count=3).launch(
server_name='0.0.0.0', share=False, inbrowser=False)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/wjyrjy/langchain-chat-glm-pdf.git
git@gitee.com:wjyrjy/langchain-chat-glm-pdf.git
wjyrjy
langchain-chat-glm-pdf
langchain-ChatGLM pdf
master

搜索帮助