代码拉取完成,页面将自动刷新
同步操作将从 Alves-xf/Wavelet-Deep-Neural-Network-for-Stripe-Noise-Removal 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 25 19:08:40 2018
@author: jtguan@stu.xidian.edu.cn
"""
from keras import backend as K
import tensorflow as tf
import os, time, glob
import PIL.Image as Image
import numpy as np
import pandas as pd
import keras
from keras.callbacks import CSVLogger, ModelCheckpoint, LearningRateScheduler
from keras.models import load_model
from keras.optimizers import Adam,SGD
from skimage.measure import compare_psnr, compare_ssim
from keras.utils import multi_gpu_model
from keras.models import Model
from keras.layers import Input,Conv2D,BatchNormalization,Activation,Subtract,Multiply,Add,Concatenate
from keras import regularizers
from keras.utils import plot_model
from keras import initializers
from keras.layers.pooling import MaxPooling2D
from keras.layers.convolutional import UpSampling2D
from pywt import dwt2,idwt2
import pywt
import scipy.io as sio
from tools import load_train_data, Degrade, train_datagen, directional_tv, tf_log10, PSNR, PSNR_LL, PSNR_HL, PSNR_LH, PSNR_HH
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
L2 =None
init = 'he_normal'
def SNRDWNN():
inpt = Input(shape=(None,None,4))
x = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same' ,kernel_initializer=init,name='Conv-1')(inpt)
x = Activation('relu')(x)
for i in range(8):
x = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same' ,kernel_initializer=init)(x)
x = Activation('relu')(x)
residual = Conv2D(filters=4, kernel_size=(3,3), strides=(1,1), padding='same' ,kernel_initializer=init, name = 'residual')(x)
res = Add(name = 'res')([inpt,residual])
model = Model(inputs=inpt,
outputs=[res,residual],
name = 'DWSRN'
)
return model
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
batch_size = 128
train_data = '../data/npy_data/Train_64.npy'
checkpoint_file = 'weights'
TRAIN = 0
TEST = 1
realFrame = 0
#-----------------------------------------------------------------------#
#-----------------------------------------------------------------------#
def adam_step_decay(epoch):
if epoch<= 20:
lr = 1e-3
elif epoch > 20 and epoch <= 35:
lr = 1e-3 * 0.5
elif epoch > 35 and epoch <= 45:
lr = 1e-4
else:
lr = 1e-4 *0.5
if TRAIN:
data = load_train_data(train_data)
data = data.reshape((data.shape[0],data.shape[1],data.shape[2]))
data = data.astype('float32')/255.0
model = SNRDWNN()
# model selection
with open('./'+checkpoint_file+'/model_summary.txt','w') as f:
model.summary(print_fn=lambda x: f.write(x+'\n'))
#plot_model(model, to_file='./'+'./'+checkpoint_file+'/model.png')
opt = Adam(decay =1e-7)
losses = {
"res": "mse",
"residual": directional_tv,
}
lossWeights = {"res": 0.95, "residual": 0.05}
model.compile(optimizer=opt, loss=losses, loss_weights=lossWeights, metrics=[PSNR_LL,PSNR_HL,PSNR_LH,PSNR_HH])
# use call back functions
filepath='./'+checkpoint_file+'/weights-{epoch:02d}-{res_PSNR_LL:.4f}-{res_PSNR_HL:.4f}-{res_PSNR_LH:.4f}-{res_PSNR_HH:.4f}-{res_loss:.4f}.hdf5'
ckpt = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, period=1)
lr = LearningRateScheduler(adam_step_decay)
TensorBoard = keras.callbacks.TensorBoard(log_dir='./logs')
# train
history = model.fit_generator(train_datagen(data, batch_size=batch_size),
steps_per_epoch=len(data)//batch_size,
epochs=50,verbose=1, callbacks=[ckpt, lr, TensorBoard],initial_epoch=0)
#----------------------------------------------------------------------#
#----------------------------------------------------------------------#
#----------------------------------------------------------------------#
#----------------------------------------------------------------------#
if TEST:
WEIGHT_PATH = './'+checkpoint_file+'/weight.hdf5'
if not realFrame:
print('Test on Simulation SEQ or IMG!')
save_dir = './sim_res'
test_dir = './Set12/'
#----------------------------------------------------------------------#
def Addnoise(image,beta= 0.15):
image.astype('float32')
np.random.seed(0)
G_col = np.random.normal(0, beta, image.shape[1])
G_noise = np.tile(G_col,(image.shape[0],1))
G_noise = np.reshape(G_noise,image.shape)
image_G = image + G_noise
return image_G
#----------------------------------------------------------------------#
model = SNRDWNN()
model.load_weights(WEIGHT_PATH)
print('Start to test on {}'.format(test_dir))
out_dir = save_dir + '/' + test_dir.split('/')[-1] + '/'
if not os.path.exists(out_dir):
os.mkdir(out_dir)
name = []
GainList = []
OnoiseList = []
psnr = []
ssim = []
file_list = os.listdir(test_dir)
cnt=0
for file in file_list:
# read image
cnt = cnt + 1
IMG = Image.open(test_dir + file)
img_clean = np.array(IMG, dtype='float32') / 255.0
img_test = Addnoise(img_clean,beta=0.1).astype('float32')
# predict
x_test = np.expand_dims(img_test,axis=0)
x_test = np.expand_dims(x_test,axis=3)
# Descreat Wavelet Transform
t1 = time.time()
LLY,(LHY,HLY,HHY) = pywt.dwt2(img_test, 'haar')
Y = np.stack((LLY,LHY,HLY,HHY),axis=2)
# predict
x_test = np.expand_dims(Y,axis=0)
y_pred,noise = model.predict(x_test)
# calculate numeric metrics
coeffs_pred = y_pred[0,:,:,0],(LHY,y_pred[0,:,:,2],HHY)
img_out = pywt.idwt2(coeffs_pred, 'haar')
t2 = time.time()
print("time: %f" % (t2-t1))
img_out = np.clip(img_out, 0, 1)
psnr_noise, psnr_denoised = compare_psnr(img_clean, img_test), compare_psnr(img_clean, img_out)
ssim_noise, ssim_denoised = compare_ssim(img_clean, img_test), compare_ssim(img_clean, img_out)
psnr.append(psnr_denoised)
ssim.append(ssim_denoised)
# save images
filename = str(cnt)
name.append(filename)
img_test = Image.fromarray(np.clip((img_test*255),0,255).astype('uint8'))
img_test.save(out_dir + filename+'_dsrn_psnr{:.2f}.png'.format(psnr_noise))
img_out = Image.fromarray((img_out*255).astype('uint8'))
img_out.save(out_dir + filename+'dwsrn__psnr{:.2f}.png'.format(psnr_denoised))
print(filename)
psnr_avg = sum(psnr)/len(psnr)
ssim_avg = sum(ssim)/len(ssim)
name.append('Average')
psnr.append(psnr_avg)
ssim.append(ssim_avg)
print('Average PSNR = {0:.4f}, SSIM = {1:.4f}'.format(psnr_avg, ssim_avg))
#----------------------------------------------------------------------#
#----------------------------------------------------------------------#
#----------------------------------------------------------------------#
#----------------------------------------------------------------------#
if(realFrame):
#----------------------------------------------------------------------#
print("Test on Real Frame !")
save_dir = './realFrame'
multi_GPU = 0
#----------------------------------------------------------------------#
test_dir = './IR_Set/'
model = SNRDWNN()
model.load_weights(WEIGHT_PATH)
print('Start to test on {}'.format(test_dir))
out_dir = save_dir + '/' + test_dir.split('/')[-1] + '/'
if not os.path.exists(out_dir):
os.mkdir(out_dir)
name = []
file_list = os.listdir(test_dir)
for file in file_list:
# read image
img_clean = np.array(Image.open(test_dir + file), dtype='float32') / 255.0
img_test = img_clean.astype('float32')
if(len(img_test.shape)>2):
img_test = img_test[:,:,0]
# predict
x_test = img_test.reshape(1, img_test.shape[0], img_test.shape[1], 1)
LLY,(LHY,HLY,HHY) = pywt.dwt2(img_test, 'haar')
Y = np.stack((LLY,LHY,HLY,HHY),axis=2)
# predict
x_test = np.expand_dims(Y,axis=0)
y_pred,noise = model.predict(x_test)
# calculate numeric metrics
pred = np.stack((y_pred[0,:,:,0],y_pred[0,:,:,1],y_pred[0,:,:,2],y_pred[0,:,:,3]),axis=2)
coeffs_pred = y_pred[0,:,:,0],(y_pred[0,:,:,1],y_pred[0,:,:,2],y_pred[0,:,:,3])
img_out = pywt.idwt2(coeffs_pred, 'haar')
# calculate numeric metrics
img_out = np.clip(img_out, 0, 1)
filename = file # get the name of image file
name.append(filename)
img_out = Image.fromarray((img_out*255).astype('uint8'))
img_out.save(out_dir + filename)
print('save'+out_dir + filename)
print('Test Over')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。