1 Star 0 Fork 76

titzp/Causal_Inference_book

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
chapter17.do 12.11 KB
一键复制 编辑 原始数据 按行查看 历史
/***************************************************************
Stata code for Causal Inference: What If by Miguel Hernan & Jamie Robins
Date: 10/10/2019
Author: Eleanor Murray
For errors contact: ejmurray@bu.edu
***************************************************************/
/***************************************************************
PROGRAM 17.1
Nonparametric estimation of survival curves
Data from NHEFS
Section 17.1
***************************************************************/
clear
use "nhefs.dta"
/*Some preprocessing of the data*/
gen survtime = .
replace survtime = 120 if death == 0
replace survtime = (yrdth - 83)*12 + modth if death ==1
* yrdth ranges from 83 to 92*
tab death qsmk
/*Kaplan-Meier graph of observed survival over time, by quitting smoking*/
*For now, we use the stset function in Stata*
stset survtime, failure(death=1)
sts graph, by(qsmk) xlabel(0(12)120)
/***************************************************************
PROGRAM 17.2
Parametric estimation of survival curves via hazards model
Data from NHEFS
Section 17.1
Generates Figure 17.4
***************************************************************/
/**Create person-month dataset for survival analyses**/
/*We want our new dataset to include 1 observation per person per month alive, starting at time = 0*/
*Individuals who survive to the end of follow-up will have 119 time points*
*Individuals who die will have survtime - 1 time points*
clear
use "nhefs.dta"
gen survtime = .
replace survtime = 120 if death == 0
replace survtime = (yrdth - 83)*12 + modth if death ==1
*expand data to person-time*
gen time = 0
expand survtime if time == 0
bysort seqn: replace time = _n - 1
*Create event variable*
gen event = 0
replace event = 1 if time == survtime - 1 & death == 1
tab event
*Create time-squared variable for analyses*
gen timesq = time*time
*Save the dataset to your working directory for future use*
save nhefs_surv, replace
/**Hazard ratios**/
clear
use "nhefs_surv.dta"
*Fit a pooled logistic hazards model *
logistic event qsmk qsmk#c.time qsmk#c.time#c.time c.time c.time#c.time
/**Survival curves: run regression then do:**/
*Create a dataset with all time points under each treatment level*
*Re-expand data with rows for all timepoints*
drop if time != 0
expand 120 if time ==0
bysort seqn: replace time = _n - 1
*Create 2 copies of each subject, and set outcome to missing and treatment -- use only the newobs*
expand 2 , generate(interv)
replace qsmk = interv
*Generate predicted event and survival probabilities for each person each month in copies*
predict pevent_k, pr
gen psurv_k = 1-pevent_k
keep seqn time qsmk interv psurv_k
*Within copies, generate predicted survival over time*
*Remember, survival is the product of conditional survival probabilities in each interval*
sort seqn interv time
gen _t = time + 1
gen psurv = psurv_k if _t ==1
bysort seqn interv: replace psurv = psurv_k*psurv[_t-1] if _t >1
*Display 10-year standardized survival, under interventions*
*Note: since time starts at 0, month 119 is 10-year survival*
by interv, sort: summarize psurv if time == 119
*Graph of standardized survival over time, under interventions*
*Note, we want our graph to start at 100% survival, so add an extra time point with P(surv) = 1*
expand 2 if time ==0, generate(newtime)
replace psurv = 1 if newtime == 1
gen time2 = 0 if newtime ==1
replace time2 = time + 1 if newtime == 0
*Separate the survival probabilities to allow plotting by intervention on qsmk*
separate psurv, by(interv)
*Plot the curves*
twoway (line psurv0 time2, sort) (line psurv1 time2, sort) if interv > -1, ylabel(0.5(0.1)1.0) xlabel(0(12)120) ytitle("Survival probability") xtitle("Months of follow-up") legend(label(1 "A=0") label(2 "A=1"))
/***************************************************************
PROGRAM 17.3
Estimation of survival curves via IP weighted hazards model
Data from NHEFS
Section 17.4
Generates Figure 17.6
***************************************************************/
clear
use "nhefs_surv.dta"
keep seqn event qsmk time sex race age education smokeintensity smkintensity82_71 smokeyrs exercise active wt71
preserve
*Estimate weights*
logit qsmk sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity ///
c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71 if time == 0
predict p_qsmk, pr
logit qsmk if time ==0
predict num, pr
gen sw=num/p_qsmk if qsmk==1
replace sw=(1-num)/(1-p_qsmk) if qsmk==0
summarize sw
*IP weighted survival by smoking cessation*
logit event qsmk qsmk#c.time qsmk#c.time#c.time c.time c.time#c.time [pweight=sw] , cluster(seqn)
*Create a dataset with all time points under each treatment level*
*Re-expand data with rows for all timepoints*
drop if time != 0
expand 120 if time ==0
bysort seqn: replace time = _n - 1
*Create 2 copies of each subject, and set outcome to missing and treatment -- use only the newobs*
expand 2 , generate(interv)
replace qsmk = interv
*Generate predicted event and survival probabilities for each person each month in copies*
predict pevent_k, pr
gen psurv_k = 1-pevent_k
keep seqn time qsmk interv psurv_k
*Within copies, generate predicted survival over time*
*Remember, survival is the product of conditional survival probabilities in each interval*
sort seqn interv time
gen _t = time + 1
gen psurv = psurv_k if _t ==1
bysort seqn interv: replace psurv = psurv_k*psurv[_t-1] if _t >1
*Display 10-year standardized survival, under interventions*
*Note: since time starts at 0, month 119 is 10-year survival*
by interv, sort: summarize psurv if time == 119
quietly summarize psurv if(interv==0 & time ==119)
matrix input observe = (0,`r(mean)')
quietly summarize psurv if(interv==1 & time ==119)
matrix observe = (observe \1,`r(mean)')
matrix observe = (observe \3, observe[2,2]-observe[1,2])
matrix list observe
*Graph of standardized survival over time, under interventions*
*Note: since our outcome model has no covariates, we can plot psurv directly. If we had covariates we would need to stratify or average across the values*
expand 2 if time ==0, generate(newtime)
replace psurv = 1 if newtime == 1
gen time2 = 0 if newtime ==1
replace time2 = time + 1 if newtime == 0
separate psurv, by(interv)
twoway (line psurv0 time2, sort) (line psurv1 time2, sort) if interv > -1, ylabel(0.5(0.1)1.0) xlabel(0(12)120) ytitle("Survival probability") xtitle("Months of follow-up") legend(label(1 "A=0") label(2 "A=1"))
*remove extra timepoint*
drop if newtime == 1
drop time2
restore
**Bootstraps**
save nhefs_std1 , replace
capture program drop bootipw_surv
program define bootipw_surv , rclass
u nhefs_std1 , clear
preserve
bsample, cluster(seqn) idcluster(newseqn)
logit qsmk sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity ///
c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71 if time == 0
predict p_qsmk, pr
logit qsmk if time ==0
predict num, pr
gen sw=num/p_qsmk if qsmk==1
replace sw=(1-num)/(1-p_qsmk) if qsmk==0
logit event qsmk qsmk#c.time qsmk#c.time#c.time c.time c.time#c.time [pweight=sw] , cluster(newseqn)
drop if time != 0
expand 120 if time ==0
bysort newseqn: replace time = _n - 1
expand 2 , generate(interv_b)
replace qsmk = interv_b
predict pevent_k, pr
gen psurv_k = 1-pevent_k
keep newseqn time qsmk interv_b psurv_k
sort newseqn interv_b time
gen _t = time + 1
gen psurv = psurv_k if _t ==1
bysort newseqn interv_b: replace psurv = psurv_k*psurv[_t-1] if _t >1
drop if time != 119
bysort interv_b: egen meanS_b = mean(psurv)
keep newseqn qsmk meanS_b
drop if newseqn != 1 /* only need one pair */
drop newseqn
return scalar boot_0 = meanS_b[1]
return scalar boot_1 = meanS_b[2]
return scalar boot_diff = return(boot_1) - return(boot_0)
restore
end
set rmsg on
simulate PrY_a0 = r(boot_0) PrY_a1 = r(boot_1) difference=r(boot_diff) , reps(10) seed(1) : bootipw_surv
set rmsg off
matrix pe = observe[1..3, 2]'
bstat, stat(pe) n(1629)
/***************************************************************
PROGRAM 17.4
Estimating of survival curves via g-formula
Data from NHEFS
Section 17.5
Generates Figure 17.7
***************************************************************/
clear
use "nhefs_surv.dta"
keep seqn event qsmk time sex race age education smokeintensity smkintensity82_71 smokeyrs exercise active wt71
preserve
quietly logistic event qsmk qsmk#c.time qsmk#c.time#c.time time c.time#c.time ///
sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity ///
c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71 , cluster(seqn)
drop if time != 0
expand 120 if time ==0
bysort seqn: replace time = _n - 1
expand 2 , generate(interv)
replace qsmk = interv
predict pevent_k, pr
gen psurv_k = 1-pevent_k
keep seqn time qsmk interv psurv_k
sort seqn interv time
gen _t = time + 1
gen psurv = psurv_k if _t ==1
bysort seqn interv: replace psurv = psurv_k*psurv[_t-1] if _t >1
by interv, sort: summarize psurv if time == 119
keep qsmk interv psurv time
bysort interv : egen meanS = mean(psurv) if time == 119
by interv: summarize meanS
quietly summarize meanS if(qsmk==0 & time ==119)
matrix input observe = ( 0,`r(mean)')
quietly summarize meanS if(qsmk==1 & time ==119)
matrix observe = (observe \1,`r(mean)')
matrix observe = (observe \2, observe[2,2]-observe[1,2])
*Add some row/column descriptions and print results to screen*
matrix rownames observe = P(Y(a=0)=1) P(Y(a=1)=1) difference
matrix colnames observe = interv survival
*Graph standardized survival over time, under interventions*
*Note: unlike in PROGRAM 17.3, we now have covariates so we first need to average survival across strata*
bysort interv time : egen meanS_t = mean(psurv)
*Now we can continue with the graph*
expand 2 if time ==0, generate(newtime)
replace meanS_t = 1 if newtime == 1
gen time2 = 0 if newtime ==1
replace time2 = time + 1 if newtime == 0
separate meanS_t, by(interv)
twoway (line meanS_t0 time2, sort) (line meanS_t1 time2, sort), ylabel(0.5(0.1)1.0) xlabel(0(12)120) ytitle("Survival probability") xtitle("Months of follow-up") legend(label(1 "A=0") label(2 "A=1"))
*remove extra timepoint*
drop if newtime == 1
restore
*Bootstraps*
save nhefs_std2 , replace
capture program drop bootstdz_surv
program define bootstdz_surv , rclass
u nhefs_std2 , clear
preserve
bsample, cluster(seqn) idcluster(newseqn)
logistic event qsmk qsmk#c.time qsmk#c.time#c.time time c.time#c.time ///
sex race c.age##c.age ib(last).education ///
c.smokeintensity##c.smokeintensity c.smkintensity82_71 ///
c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71
drop if time != 0
/*only predict on new version of data */
expand 120 if time ==0
bysort newseqn: replace time = _n - 1
expand 2 , generate(interv_b)
replace qsmk = interv_b
predict pevent_k, pr
gen psurv_k = 1-pevent_k
keep newseqn time qsmk psurv_k
sort newseqn qsmk time
gen _t = time + 1
gen psurv = psurv_k if _t ==1
bysort newseqn qsmk: replace psurv = psurv_k*psurv[_t-1] if _t >1
drop if time != 119 /* keep only last observation */
keep newseqn qsmk psurv
/* if time is in data for complete graph add time to bysort */
bysort qsmk : egen meanS_b = mean(psurv)
keep newseqn qsmk meanS_b
drop if newseqn != 1 /* only need one pair */
drop newseqn
return scalar boot_0 = meanS_b[1]
return scalar boot_1 = meanS_b[2]
return scalar boot_diff = return(boot_1) - return(boot_0)
restore
end
set rmsg on
simulate PrY_a0 = r(boot_0) PrY_a1 = r(boot_1) difference=r(boot_diff) , reps(10) seed(1) : bootstdz_surv
set rmsg off
matrix pe = observe[1..3, 2]'
bstat, stat(pe) n(1629)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
其他
1
https://gitee.com/titzp/Robins.git
git@gitee.com:titzp/Robins.git
titzp
Robins
Causal_Inference_book
master

搜索帮助