代码拉取完成,页面将自动刷新
/*********************************************************************/
/* Copyright 2009, 2010 The University of Texas at Austin. */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or */
/* without modification, are permitted provided that the following */
/* conditions are met: */
/* */
/* 1. Redistributions of source code must retain the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer. */
/* */
/* 2. Redistributions in binary form must reproduce the above */
/* copyright notice, this list of conditions and the following */
/* disclaimer in the documentation and/or other materials */
/* provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
/* POSSIBILITY OF SUCH DAMAGE. */
/* */
/* The views and conclusions contained in the software and */
/* documentation are those of the authors and should not be */
/* interpreted as representing official policies, either expressed */
/* or implied, of The University of Texas at Austin. */
/*********************************************************************/
#include <stdio.h>
#include <string.h>
#include "cpuid.h"
#if defined(_MSC_VER) && !defined(__clang__)
#define C_INLINE __inline
#else
#define C_INLINE inline
#endif
/*
#ifdef NO_AVX
#define CPUTYPE_HASWELL CPUTYPE_NEHALEM
#define CORE_HASWELL CORE_NEHALEM
#define CPUTYPE_SANDYBRIDGE CPUTYPE_NEHALEM
#define CORE_SANDYBRIDGE CORE_NEHALEM
#define CPUTYPE_BULLDOZER CPUTYPE_BARCELONA
#define CORE_BULLDOZER CORE_BARCELONA
#define CPUTYPE_PILEDRIVER CPUTYPE_BARCELONA
#define CORE_PILEDRIVER CORE_BARCELONA
#endif
*/
#if defined(_MSC_VER) && !defined(__clang__)
void cpuid(int op, int *eax, int *ebx, int *ecx, int *edx)
{
int cpuInfo[4] = {-1};
__cpuid(cpuInfo, op);
*eax = cpuInfo[0];
*ebx = cpuInfo[1];
*ecx = cpuInfo[2];
*edx = cpuInfo[3];
}
#else
#ifndef CPUIDEMU
#if defined(__APPLE__) && defined(__i386__)
void cpuid(int op, int *eax, int *ebx, int *ecx, int *edx);
#else
static C_INLINE void cpuid(int op, int *eax, int *ebx, int *ecx, int *edx){
#if defined(__i386__) && defined(__PIC__)
__asm__ __volatile__
("mov %%ebx, %%edi;"
"cpuid;"
"xchgl %%ebx, %%edi;"
: "=a" (*eax), "=D" (*ebx), "=c" (*ecx), "=d" (*edx) : "a" (op) : "cc");
#else
__asm__ __volatile__
("cpuid": "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "a" (op) : "cc");
#endif
}
#endif
#else
typedef struct {
unsigned int id, a, b, c, d;
} idlist_t;
typedef struct {
char *vendor;
char *name;
int start, stop;
} vendor_t;
extern idlist_t idlist[];
extern vendor_t vendor[];
static int cv = VENDOR;
void cpuid(unsigned int op, unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx){
static int current = 0;
int start = vendor[cv].start;
int stop = vendor[cv].stop;
int count = stop - start;
if ((current < start) || (current > stop)) current = start;
while ((count > 0) && (idlist[current].id != op)) {
current ++;
if (current > stop) current = start;
count --;
}
*eax = idlist[current].a;
*ebx = idlist[current].b;
*ecx = idlist[current].c;
*edx = idlist[current].d;
}
#endif
#endif // _MSC_VER
static C_INLINE int have_cpuid(void){
int eax, ebx, ecx, edx;
cpuid(0, &eax, &ebx, &ecx, &edx);
return eax;
}
static C_INLINE int have_excpuid(void){
int eax, ebx, ecx, edx;
cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
return eax & 0xffff;
}
#ifndef NO_AVX
static C_INLINE void xgetbv(int op, int * eax, int * edx){
//Use binary code for xgetbv
#if defined(_MSC_VER) && !defined(__clang__)
*eax = __xgetbv(op);
#else
__asm__ __volatile__
(".byte 0x0f, 0x01, 0xd0": "=a" (*eax), "=d" (*edx) : "c" (op) : "cc");
#endif
}
#endif
int support_avx(){
#ifndef NO_AVX
int eax, ebx, ecx, edx;
int ret=0;
cpuid(1, &eax, &ebx, &ecx, &edx);
if ((ecx & (1 << 28)) != 0 && (ecx & (1 << 27)) != 0 && (ecx & (1 << 26)) != 0){
xgetbv(0, &eax, &edx);
if((eax & 6) == 6){
ret=1; //OS support AVX
}
}
return ret;
#else
return 0;
#endif
}
int get_vendor(void){
int eax, ebx, ecx, edx;
char vendor[13];
cpuid(0, &eax, &ebx, &ecx, &edx);
*(int *)(&vendor[0]) = ebx;
*(int *)(&vendor[4]) = edx;
*(int *)(&vendor[8]) = ecx;
vendor[12] = (char)0;
if (!strcmp(vendor, "GenuineIntel")) return VENDOR_INTEL;
if (!strcmp(vendor, " UMC UMC UMC")) return VENDOR_UMC;
if (!strcmp(vendor, "AuthenticAMD")) return VENDOR_AMD;
if (!strcmp(vendor, "CyrixInstead")) return VENDOR_CYRIX;
if (!strcmp(vendor, "NexGenDriven")) return VENDOR_NEXGEN;
if (!strcmp(vendor, "CentaurHauls")) return VENDOR_CENTAUR;
if (!strcmp(vendor, "RiseRiseRise")) return VENDOR_RISE;
if (!strcmp(vendor, " SiS SiS SiS")) return VENDOR_SIS;
if (!strcmp(vendor, "GenuineTMx86")) return VENDOR_TRANSMETA;
if (!strcmp(vendor, "Geode by NSC")) return VENDOR_NSC;
if ((eax == 0) || ((eax & 0x500) != 0)) return VENDOR_INTEL;
return VENDOR_UNKNOWN;
}
int get_cputype(int gettype){
int eax, ebx, ecx, edx;
int extend_family, family;
int extend_model, model;
int type, stepping;
int feature = 0;
cpuid(1, &eax, &ebx, &ecx, &edx);
switch (gettype) {
case GET_EXFAMILY :
return BITMASK(eax, 20, 0xff);
case GET_EXMODEL :
return BITMASK(eax, 16, 0x0f);
case GET_TYPE :
return BITMASK(eax, 12, 0x03);
case GET_FAMILY :
return BITMASK(eax, 8, 0x0f);
case GET_MODEL :
return BITMASK(eax, 4, 0x0f);
case GET_APICID :
return BITMASK(ebx, 24, 0x0f);
case GET_LCOUNT :
return BITMASK(ebx, 16, 0x0f);
case GET_CHUNKS :
return BITMASK(ebx, 8, 0x0f);
case GET_STEPPING :
return BITMASK(eax, 0, 0x0f);
case GET_BLANDID :
return BITMASK(ebx, 0, 0xff);
case GET_NUMSHARE :
if (have_cpuid() < 4) return 0;
cpuid(4, &eax, &ebx, &ecx, &edx);
return BITMASK(eax, 14, 0xfff);
case GET_NUMCORES :
if (have_cpuid() < 4) return 0;
cpuid(4, &eax, &ebx, &ecx, &edx);
return BITMASK(eax, 26, 0x3f);
case GET_FEATURE :
if ((edx & (1 << 3)) != 0) feature |= HAVE_PSE;
if ((edx & (1 << 15)) != 0) feature |= HAVE_CMOV;
if ((edx & (1 << 19)) != 0) feature |= HAVE_CFLUSH;
if ((edx & (1 << 23)) != 0) feature |= HAVE_MMX;
if ((edx & (1 << 25)) != 0) feature |= HAVE_SSE;
if ((edx & (1 << 26)) != 0) feature |= HAVE_SSE2;
if ((edx & (1 << 27)) != 0) {
if (BITMASK(ebx, 16, 0x0f) > 0) feature |= HAVE_HIT;
}
if ((ecx & (1 << 0)) != 0) feature |= HAVE_SSE3;
if ((ecx & (1 << 9)) != 0) feature |= HAVE_SSSE3;
if ((ecx & (1 << 19)) != 0) feature |= HAVE_SSE4_1;
if ((ecx & (1 << 20)) != 0) feature |= HAVE_SSE4_2;
#ifndef NO_AVX
if (support_avx()) feature |= HAVE_AVX;
if ((ecx & (1 << 12)) != 0) feature |= HAVE_FMA3;
#endif
if (have_excpuid() >= 0x01) {
cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
if ((ecx & (1 << 6)) != 0) feature |= HAVE_SSE4A;
if ((ecx & (1 << 7)) != 0) feature |= HAVE_MISALIGNSSE;
#ifndef NO_AVX
if ((ecx & (1 << 16)) != 0) feature |= HAVE_FMA4;
#endif
if ((edx & (1 << 30)) != 0) feature |= HAVE_3DNOWEX;
if ((edx & (1 << 31)) != 0) feature |= HAVE_3DNOW;
}
if (have_excpuid() >= 0x1a) {
cpuid(0x8000001a, &eax, &ebx, &ecx, &edx);
if ((eax & (1 << 0)) != 0) feature |= HAVE_128BITFPU;
if ((eax & (1 << 1)) != 0) feature |= HAVE_FASTMOVU;
}
}
return feature;
}
int get_cacheinfo(int type, cache_info_t *cacheinfo){
int eax, ebx, ecx, edx, cpuid_level;
int info[15];
int i;
cache_info_t LC1, LD1, L2, L3,
ITB, DTB, LITB, LDTB,
L2ITB, L2DTB, L2LITB, L2LDTB;
LC1.size = 0; LC1.associative = 0; LC1.linesize = 0; LC1.shared = 0;
LD1.size = 0; LD1.associative = 0; LD1.linesize = 0; LD1.shared = 0;
L2.size = 0; L2.associative = 0; L2.linesize = 0; L2.shared = 0;
L3.size = 0; L3.associative = 0; L3.linesize = 0; L3.shared = 0;
ITB.size = 0; ITB.associative = 0; ITB.linesize = 0; ITB.shared = 0;
DTB.size = 0; DTB.associative = 0; DTB.linesize = 0; DTB.shared = 0;
LITB.size = 0; LITB.associative = 0; LITB.linesize = 0; LITB.shared = 0;
LDTB.size = 0; LDTB.associative = 0; LDTB.linesize = 0; LDTB.shared = 0;
L2ITB.size = 0; L2ITB.associative = 0; L2ITB.linesize = 0; L2ITB.shared = 0;
L2DTB.size = 0; L2DTB.associative = 0; L2DTB.linesize = 0; L2DTB.shared = 0;
L2LITB.size = 0; L2LITB.associative = 0; L2LITB.linesize = 0; L2LITB.shared = 0;
L2LDTB.size = 0; L2LDTB.associative = 0; L2LDTB.linesize = 0; L2LDTB.shared = 0;
cpuid(0, &cpuid_level, &ebx, &ecx, &edx);
if (cpuid_level > 1) {
cpuid(2, &eax, &ebx, &ecx, &edx);
info[ 0] = BITMASK(eax, 8, 0xff);
info[ 1] = BITMASK(eax, 16, 0xff);
info[ 2] = BITMASK(eax, 24, 0xff);
info[ 3] = BITMASK(ebx, 0, 0xff);
info[ 4] = BITMASK(ebx, 8, 0xff);
info[ 5] = BITMASK(ebx, 16, 0xff);
info[ 6] = BITMASK(ebx, 24, 0xff);
info[ 7] = BITMASK(ecx, 0, 0xff);
info[ 8] = BITMASK(ecx, 8, 0xff);
info[ 9] = BITMASK(ecx, 16, 0xff);
info[10] = BITMASK(ecx, 24, 0xff);
info[11] = BITMASK(edx, 0, 0xff);
info[12] = BITMASK(edx, 8, 0xff);
info[13] = BITMASK(edx, 16, 0xff);
info[14] = BITMASK(edx, 24, 0xff);
for (i = 0; i < 15; i++){
switch (info[i]){
/* This table is from http://www.sandpile.org/ia32/cpuid.htm */
case 0x01 :
ITB.size = 4;
ITB.associative = 4;
ITB.linesize = 32;
break;
case 0x02 :
LITB.size = 4096;
LITB.associative = 0;
LITB.linesize = 2;
break;
case 0x03 :
DTB.size = 4;
DTB.associative = 4;
DTB.linesize = 64;
break;
case 0x04 :
LDTB.size = 4096;
LDTB.associative = 4;
LDTB.linesize = 8;
break;
case 0x05 :
LDTB.size = 4096;
LDTB.associative = 4;
LDTB.linesize = 32;
break;
case 0x06 :
LC1.size = 8;
LC1.associative = 4;
LC1.linesize = 32;
break;
case 0x08 :
LC1.size = 16;
LC1.associative = 4;
LC1.linesize = 32;
break;
case 0x09 :
LC1.size = 32;
LC1.associative = 4;
LC1.linesize = 64;
break;
case 0x0a :
LD1.size = 8;
LD1.associative = 2;
LD1.linesize = 32;
break;
case 0x0c :
LD1.size = 16;
LD1.associative = 4;
LD1.linesize = 32;
break;
case 0x0d :
LD1.size = 16;
LD1.associative = 4;
LD1.linesize = 64;
break;
case 0x0e :
LD1.size = 24;
LD1.associative = 6;
LD1.linesize = 64;
break;
case 0x10 :
LD1.size = 16;
LD1.associative = 4;
LD1.linesize = 32;
break;
case 0x15 :
LC1.size = 16;
LC1.associative = 4;
LC1.linesize = 32;
break;
case 0x1a :
L2.size = 96;
L2.associative = 6;
L2.linesize = 64;
break;
case 0x21 :
L2.size = 256;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x22 :
L3.size = 512;
L3.associative = 4;
L3.linesize = 64;
break;
case 0x23 :
L3.size = 1024;
L3.associative = 8;
L3.linesize = 64;
break;
case 0x25 :
L3.size = 2048;
L3.associative = 8;
L3.linesize = 64;
break;
case 0x29 :
L3.size = 4096;
L3.associative = 8;
L3.linesize = 64;
break;
case 0x2c :
LD1.size = 32;
LD1.associative = 8;
LD1.linesize = 64;
break;
case 0x30 :
LC1.size = 32;
LC1.associative = 8;
LC1.linesize = 64;
break;
case 0x39 :
L2.size = 128;
L2.associative = 4;
L2.linesize = 64;
break;
case 0x3a :
L2.size = 192;
L2.associative = 6;
L2.linesize = 64;
break;
case 0x3b :
L2.size = 128;
L2.associative = 2;
L2.linesize = 64;
break;
case 0x3c :
L2.size = 256;
L2.associative = 4;
L2.linesize = 64;
break;
case 0x3d :
L2.size = 384;
L2.associative = 6;
L2.linesize = 64;
break;
case 0x3e :
L2.size = 512;
L2.associative = 4;
L2.linesize = 64;
break;
case 0x41 :
L2.size = 128;
L2.associative = 4;
L2.linesize = 32;
break;
case 0x42 :
L2.size = 256;
L2.associative = 4;
L2.linesize = 32;
break;
case 0x43 :
L2.size = 512;
L2.associative = 4;
L2.linesize = 32;
break;
case 0x44 :
L2.size = 1024;
L2.associative = 4;
L2.linesize = 32;
break;
case 0x45 :
L2.size = 2048;
L2.associative = 4;
L2.linesize = 32;
break;
case 0x46 :
L3.size = 4096;
L3.associative = 4;
L3.linesize = 64;
break;
case 0x47 :
L3.size = 8192;
L3.associative = 8;
L3.linesize = 64;
break;
case 0x48 :
L2.size = 3184;
L2.associative = 12;
L2.linesize = 64;
break;
case 0x49 :
if ((get_cputype(GET_FAMILY) == 0x0f) && (get_cputype(GET_MODEL) == 0x06)) {
L3.size = 4096;
L3.associative = 16;
L3.linesize = 64;
} else {
L2.size = 4096;
L2.associative = 16;
L2.linesize = 64;
}
break;
case 0x4a :
L3.size = 6144;
L3.associative = 12;
L3.linesize = 64;
break;
case 0x4b :
L3.size = 8192;
L3.associative = 16;
L3.linesize = 64;
break;
case 0x4c :
L3.size = 12280;
L3.associative = 12;
L3.linesize = 64;
break;
case 0x4d :
L3.size = 16384;
L3.associative = 16;
L3.linesize = 64;
break;
case 0x4e :
L2.size = 6144;
L2.associative = 24;
L2.linesize = 64;
break;
case 0x4f :
ITB.size = 4;
ITB.associative = 0;
ITB.linesize = 32;
break;
case 0x50 :
ITB.size = 4;
ITB.associative = 0;
ITB.linesize = 64;
LITB.size = 4096;
LITB.associative = 0;
LITB.linesize = 64;
LITB.shared = 1;
break;
case 0x51 :
ITB.size = 4;
ITB.associative = 0;
ITB.linesize = 128;
LITB.size = 4096;
LITB.associative = 0;
LITB.linesize = 128;
LITB.shared = 1;
break;
case 0x52 :
ITB.size = 4;
ITB.associative = 0;
ITB.linesize = 256;
LITB.size = 4096;
LITB.associative = 0;
LITB.linesize = 256;
LITB.shared = 1;
break;
case 0x55 :
LITB.size = 4096;
LITB.associative = 0;
LITB.linesize = 7;
LITB.shared = 1;
break;
case 0x56 :
LDTB.size = 4096;
LDTB.associative = 4;
LDTB.linesize = 16;
break;
case 0x57 :
LDTB.size = 4096;
LDTB.associative = 4;
LDTB.linesize = 16;
break;
case 0x5b :
DTB.size = 4;
DTB.associative = 0;
DTB.linesize = 64;
LDTB.size = 4096;
LDTB.associative = 0;
LDTB.linesize = 64;
LDTB.shared = 1;
break;
case 0x5c :
DTB.size = 4;
DTB.associative = 0;
DTB.linesize = 128;
LDTB.size = 4096;
LDTB.associative = 0;
LDTB.linesize = 128;
LDTB.shared = 1;
break;
case 0x5d :
DTB.size = 4;
DTB.associative = 0;
DTB.linesize = 256;
LDTB.size = 4096;
LDTB.associative = 0;
LDTB.linesize = 256;
LDTB.shared = 1;
break;
case 0x60 :
LD1.size = 16;
LD1.associative = 8;
LD1.linesize = 64;
break;
case 0x63 :
DTB.size = 2048;
DTB.associative = 4;
DTB.linesize = 32;
LDTB.size = 4096;
LDTB.associative= 4;
LDTB.linesize = 32;
case 0x66 :
LD1.size = 8;
LD1.associative = 4;
LD1.linesize = 64;
break;
case 0x67 :
LD1.size = 16;
LD1.associative = 4;
LD1.linesize = 64;
break;
case 0x68 :
LD1.size = 32;
LD1.associative = 4;
LD1.linesize = 64;
break;
case 0x70 :
LC1.size = 12;
LC1.associative = 8;
break;
case 0x71 :
LC1.size = 16;
LC1.associative = 8;
break;
case 0x72 :
LC1.size = 32;
LC1.associative = 8;
break;
case 0x73 :
LC1.size = 64;
LC1.associative = 8;
break;
case 0x76 :
ITB.size = 2048;
ITB.associative = 0;
ITB.linesize = 8;
LITB.size = 4096;
LITB.associative= 0;
LITB.linesize = 8;
case 0x77 :
LC1.size = 16;
LC1.associative = 4;
LC1.linesize = 64;
break;
case 0x78 :
L2.size = 1024;
L2.associative = 4;
L2.linesize = 64;
break;
case 0x79 :
L2.size = 128;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x7a :
L2.size = 256;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x7b :
L2.size = 512;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x7c :
L2.size = 1024;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x7d :
L2.size = 2048;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x7e :
L2.size = 256;
L2.associative = 8;
L2.linesize = 128;
break;
case 0x7f :
L2.size = 512;
L2.associative = 2;
L2.linesize = 64;
break;
case 0x81 :
L2.size = 128;
L2.associative = 8;
L2.linesize = 32;
break;
case 0x82 :
L2.size = 256;
L2.associative = 8;
L2.linesize = 32;
break;
case 0x83 :
L2.size = 512;
L2.associative = 8;
L2.linesize = 32;
break;
case 0x84 :
L2.size = 1024;
L2.associative = 8;
L2.linesize = 32;
break;
case 0x85 :
L2.size = 2048;
L2.associative = 8;
L2.linesize = 32;
break;
case 0x86 :
L2.size = 512;
L2.associative = 4;
L2.linesize = 64;
break;
case 0x87 :
L2.size = 1024;
L2.associative = 8;
L2.linesize = 64;
break;
case 0x88 :
L3.size = 2048;
L3.associative = 4;
L3.linesize = 64;
break;
case 0x89 :
L3.size = 4096;
L3.associative = 4;
L3.linesize = 64;
break;
case 0x8a :
L3.size = 8192;
L3.associative = 4;
L3.linesize = 64;
break;
case 0x8d :
L3.size = 3096;
L3.associative = 12;
L3.linesize = 128;
break;
case 0x90 :
ITB.size = 4;
ITB.associative = 0;
ITB.linesize = 64;
break;
case 0x96 :
DTB.size = 4;
DTB.associative = 0;
DTB.linesize = 32;
break;
case 0x9b :
L2DTB.size = 4;
L2DTB.associative = 0;
L2DTB.linesize = 96;
break;
case 0xb0 :
ITB.size = 4;
ITB.associative = 4;
ITB.linesize = 128;
break;
case 0xb1 :
LITB.size = 4096;
LITB.associative = 4;
LITB.linesize = 4;
break;
case 0xb2 :
ITB.size = 4;
ITB.associative = 4;
ITB.linesize = 64;
break;
case 0xb3 :
DTB.size = 4;
DTB.associative = 4;
DTB.linesize = 128;
break;
case 0xb4 :
DTB.size = 4;
DTB.associative = 4;
DTB.linesize = 256;
break;
case 0xba :
DTB.size = 4;
DTB.associative = 4;
DTB.linesize = 64;
break;
case 0xd0 :
L3.size = 512;
L3.associative = 4;
L3.linesize = 64;
break;
case 0xd1 :
L3.size = 1024;
L3.associative = 4;
L3.linesize = 64;
break;
case 0xd2 :
L3.size = 2048;
L3.associative = 4;
L3.linesize = 64;
break;
case 0xd6 :
L3.size = 1024;
L3.associative = 8;
L3.linesize = 64;
break;
case 0xd7 :
L3.size = 2048;
L3.associative = 8;
L3.linesize = 64;
break;
case 0xd8 :
L3.size = 4096;
L3.associative = 8;
L3.linesize = 64;
break;
case 0xdc :
L3.size = 2048;
L3.associative = 12;
L3.linesize = 64;
break;
case 0xdd :
L3.size = 4096;
L3.associative = 12;
L3.linesize = 64;
break;
case 0xde :
L3.size = 8192;
L3.associative = 12;
L3.linesize = 64;
break;
case 0xe2 :
L3.size = 2048;
L3.associative = 16;
L3.linesize = 64;
break;
case 0xe3 :
L3.size = 4096;
L3.associative = 16;
L3.linesize = 64;
break;
case 0xe4 :
L3.size = 8192;
L3.associative = 16;
L3.linesize = 64;
break;
}
}
}
if (get_vendor() == VENDOR_INTEL) {
cpuid(0x80000000, &cpuid_level, &ebx, &ecx, &edx);
if (cpuid_level >= 0x80000006) {
if(L2.size<=0){
//If we didn't detect L2 correctly before,
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
L2.size = BITMASK(ecx, 16, 0xffff);
L2.associative = BITMASK(ecx, 12, 0x0f);
switch (L2.associative){
case 0x06:
L2.associative = 8;
break;
case 0x08:
L2.associative = 16;
break;
}
L2.linesize = BITMASK(ecx, 0, 0xff);
}
}
}
if ((get_vendor() == VENDOR_AMD) || (get_vendor() == VENDOR_CENTAUR)) {
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
LDTB.size = 4096;
LDTB.associative = BITMASK(eax, 24, 0xff);
if (LDTB.associative == 0xff) LDTB.associative = 0;
LDTB.linesize = BITMASK(eax, 16, 0xff);
LITB.size = 4096;
LITB.associative = BITMASK(eax, 8, 0xff);
if (LITB.associative == 0xff) LITB.associative = 0;
LITB.linesize = BITMASK(eax, 0, 0xff);
DTB.size = 4;
DTB.associative = BITMASK(ebx, 24, 0xff);
if (DTB.associative == 0xff) DTB.associative = 0;
DTB.linesize = BITMASK(ebx, 16, 0xff);
ITB.size = 4;
ITB.associative = BITMASK(ebx, 8, 0xff);
if (ITB.associative == 0xff) ITB.associative = 0;
ITB.linesize = BITMASK(ebx, 0, 0xff);
LD1.size = BITMASK(ecx, 24, 0xff);
LD1.associative = BITMASK(ecx, 16, 0xff);
if (LD1.associative == 0xff) LD1.associative = 0;
LD1.linesize = BITMASK(ecx, 0, 0xff);
LC1.size = BITMASK(ecx, 24, 0xff);
LC1.associative = BITMASK(ecx, 16, 0xff);
if (LC1.associative == 0xff) LC1.associative = 0;
LC1.linesize = BITMASK(ecx, 0, 0xff);
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
L2LDTB.size = 4096;
L2LDTB.associative = BITMASK(eax, 24, 0xff);
if (L2LDTB.associative == 0xff) L2LDTB.associative = 0;
L2LDTB.linesize = BITMASK(eax, 16, 0xff);
L2LITB.size = 4096;
L2LITB.associative = BITMASK(eax, 8, 0xff);
if (L2LITB.associative == 0xff) L2LITB.associative = 0;
L2LITB.linesize = BITMASK(eax, 0, 0xff);
L2DTB.size = 4;
L2DTB.associative = BITMASK(ebx, 24, 0xff);
if (L2DTB.associative == 0xff) L2DTB.associative = 0;
L2DTB.linesize = BITMASK(ebx, 16, 0xff);
L2ITB.size = 4;
L2ITB.associative = BITMASK(ebx, 8, 0xff);
if (L2ITB.associative == 0xff) L2ITB.associative = 0;
L2ITB.linesize = BITMASK(ebx, 0, 0xff);
if(L2.size <= 0){
//If we didn't detect L2 correctly before,
L2.size = BITMASK(ecx, 16, 0xffff);
L2.associative = BITMASK(ecx, 12, 0xf);
switch (L2.associative){
case 0x06:
L2.associative = 8;
break;
case 0x08:
L2.associative = 16;
break;
}
if (L2.associative == 0xff) L2.associative = 0;
L2.linesize = BITMASK(ecx, 0, 0xff);
}
L3.size = BITMASK(edx, 18, 0x3fff) * 512;
L3.associative = BITMASK(edx, 12, 0xf);
if (L3.associative == 0xff) L2.associative = 0;
L3.linesize = BITMASK(edx, 0, 0xff);
}
switch (type) {
case CACHE_INFO_L1_I :
*cacheinfo = LC1;
break;
case CACHE_INFO_L1_D :
*cacheinfo = LD1;
break;
case CACHE_INFO_L2 :
*cacheinfo = L2;
break;
case CACHE_INFO_L3 :
*cacheinfo = L3;
break;
case CACHE_INFO_L1_DTB :
*cacheinfo = DTB;
break;
case CACHE_INFO_L1_ITB :
*cacheinfo = ITB;
break;
case CACHE_INFO_L1_LDTB :
*cacheinfo = LDTB;
break;
case CACHE_INFO_L1_LITB :
*cacheinfo = LITB;
break;
case CACHE_INFO_L2_DTB :
*cacheinfo = L2DTB;
break;
case CACHE_INFO_L2_ITB :
*cacheinfo = L2ITB;
break;
case CACHE_INFO_L2_LDTB :
*cacheinfo = L2LDTB;
break;
case CACHE_INFO_L2_LITB :
*cacheinfo = L2LITB;
break;
}
return 0;
}
int get_cpuname(void){
int family, exfamily, model, vendor, exmodel;
if (!have_cpuid()) return CPUTYPE_80386;
family = get_cputype(GET_FAMILY);
exfamily = get_cputype(GET_EXFAMILY);
model = get_cputype(GET_MODEL);
exmodel = get_cputype(GET_EXMODEL);
vendor = get_vendor();
if (vendor == VENDOR_INTEL){
switch (family) {
case 0x4:
return CPUTYPE_80486;
case 0x5:
return CPUTYPE_PENTIUM;
case 0x6:
switch (exmodel) {
case 0:
switch (model) {
case 1:
case 3:
case 5:
case 6:
return CPUTYPE_PENTIUM2;
case 7:
case 8:
case 10:
case 11:
return CPUTYPE_PENTIUM3;
case 9:
case 13:
case 14:
return CPUTYPE_PENTIUMM;
case 15:
return CPUTYPE_CORE2;
}
break;
case 1:
switch (model) {
case 6:
return CPUTYPE_CORE2;
case 7:
return CPUTYPE_PENRYN;
case 10:
case 11:
case 14:
case 15:
return CPUTYPE_NEHALEM;
case 12:
return CPUTYPE_ATOM;
case 13:
return CPUTYPE_DUNNINGTON;
}
break;
case 2:
switch (model) {
case 5:
//Intel Core (Clarkdale) / Core (Arrandale)
// Pentium (Clarkdale) / Pentium Mobile (Arrandale)
// Xeon (Clarkdale), 32nm
return CPUTYPE_NEHALEM;
case 10:
//Intel Core i5-2000 /i7-2000 (Sandy Bridge)
if(support_avx())
return CPUTYPE_SANDYBRIDGE;
else
return CPUTYPE_NEHALEM; //OS doesn't support AVX
case 12:
//Xeon Processor 5600 (Westmere-EP)
return CPUTYPE_NEHALEM;
case 13:
//Intel Core i7-3000 / Xeon E5 (Sandy Bridge)
if(support_avx())
return CPUTYPE_SANDYBRIDGE;
else
return CPUTYPE_NEHALEM;
case 14:
// Xeon E7540
case 15:
//Xeon Processor E7 (Westmere-EX)
return CPUTYPE_NEHALEM;
}
break;
case 3:
switch (model) {
case 7:
// Bay Trail
return CPUTYPE_ATOM;
case 10:
case 14:
// Ivy Bridge
if(support_avx())
return CPUTYPE_SANDYBRIDGE;
else
return CPUTYPE_NEHALEM;
case 12:
case 15:
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 13:
//Broadwell
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
}
break;
case 4:
switch (model) {
case 5:
case 6:
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 7:
case 15:
//Broadwell
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 14:
//Skylake
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 12:
// Braswell
case 13:
// Avoton
return CPUTYPE_NEHALEM;
}
break;
case 5:
switch (model) {
case 6:
//Broadwell
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 5:
case 14:
// Skylake
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 7:
// Xeon Phi Knights Landing
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
case 12:
// Apollo Lake
return CPUTYPE_NEHALEM;
}
break;
case 9:
case 8:
switch (model) {
case 14: // Kaby Lake
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_HASWELL;
#else
return CPUTYPE_SANDYBRIDGE;
#endif
else
return CPUTYPE_NEHALEM;
}
break;
}
break;
case 0x7:
return CPUTYPE_ITANIUM;
case 0xf:
switch (exfamily) {
case 0 :
return CPUTYPE_PENTIUM4;
case 1 :
return CPUTYPE_ITANIUM;
}
break;
}
return CPUTYPE_INTEL_UNKNOWN;
}
if (vendor == VENDOR_AMD){
switch (family) {
case 0x4:
return CPUTYPE_AMD5X86;
case 0x5:
return CPUTYPE_AMDK6;
case 0x6:
return CPUTYPE_ATHLON;
case 0xf:
switch (exfamily) {
case 0:
case 2:
return CPUTYPE_OPTERON;
case 1:
case 3:
case 7:
case 10:
return CPUTYPE_BARCELONA;
case 5:
return CPUTYPE_BOBCAT;
case 6:
switch (model) {
case 1:
//AMD Bulldozer Opteron 6200 / Opteron 4200 / AMD FX-Series
if(support_avx())
return CPUTYPE_BULLDOZER;
else
return CPUTYPE_BARCELONA; //OS don't support AVX.
case 2: //AMD Piledriver
case 3: //AMD Richland
if(support_avx())
return CPUTYPE_PILEDRIVER;
else
return CPUTYPE_BARCELONA; //OS don't support AVX.
case 5: // New EXCAVATOR CPUS
if(support_avx())
return CPUTYPE_EXCAVATOR;
else
return CPUTYPE_BARCELONA; //OS don't support AVX.
case 0:
case 8:
switch(exmodel){
case 1: //AMD Trinity
if(support_avx())
return CPUTYPE_PILEDRIVER;
else
return CPUTYPE_BARCELONA; //OS don't support AVX.
case 3:
if(support_avx())
return CPUTYPE_STEAMROLLER;
else
return CPUTYPE_BARCELONA; //OS don't support AVX.
case 6:
if(support_avx())
return CPUTYPE_EXCAVATOR;
else
return CPUTYPE_BARCELONA; //OS don't support AVX.
}
break;
}
break;
case 8:
switch (model) {
case 1:
// AMD Ryzen
if(support_avx())
#ifndef NO_AVX2
return CPUTYPE_ZEN;
#else
return CPUTYPE_SANDYBRIDGE; // Zen is closer in architecture to Sandy Bridge than to Excavator
#endif
else
return CPUTYPE_BARCELONA;
}
}
break;
}
return CPUTYPE_AMD_UNKNOWN;
}
if (vendor == VENDOR_CYRIX){
switch (family) {
case 0x4:
return CPUTYPE_CYRIX5X86;
case 0x5:
return CPUTYPE_CYRIXM1;
case 0x6:
return CPUTYPE_CYRIXM2;
}
return CPUTYPE_CYRIX_UNKNOWN;
}
if (vendor == VENDOR_NEXGEN){
switch (family) {
case 0x5:
return CPUTYPE_NEXGENNX586;
}
return CPUTYPE_NEXGEN_UNKNOWN;
}
if (vendor == VENDOR_CENTAUR){
switch (family) {
case 0x5:
return CPUTYPE_CENTAURC6;
break;
case 0x6:
return CPUTYPE_NANO;
break;
}
return CPUTYPE_VIAC3;
}
if (vendor == VENDOR_RISE){
switch (family) {
case 0x5:
return CPUTYPE_RISEMP6;
}
return CPUTYPE_RISE_UNKNOWN;
}
if (vendor == VENDOR_SIS){
switch (family) {
case 0x5:
return CPUTYPE_SYS55X;
}
return CPUTYPE_SIS_UNKNOWN;
}
if (vendor == VENDOR_TRANSMETA){
switch (family) {
case 0x5:
return CPUTYPE_CRUSOETM3X;
}
return CPUTYPE_TRANSMETA_UNKNOWN;
}
if (vendor == VENDOR_NSC){
switch (family) {
case 0x5:
return CPUTYPE_NSGEODE;
}
return CPUTYPE_NSC_UNKNOWN;
}
return CPUTYPE_UNKNOWN;
}
static char *cpuname[] = {
"UNKNOWN",
"INTEL_UNKNOWN",
"UMC_UNKNOWN",
"AMD_UNKNOWN",
"CYRIX_UNKNOWN",
"NEXGEN_UNKNOWN",
"CENTAUR_UNKNOWN",
"RISE_UNKNOWN",
"SIS_UNKNOWN",
"TRANSMETA_UNKNOWN",
"NSC_UNKNOWN",
"80386",
"80486",
"PENTIUM",
"PENTIUM2",
"PENTIUM3",
"PENTIUMM",
"PENTIUM4",
"CORE2",
"PENRYN",
"DUNNINGTON",
"NEHALEM",
"ATOM",
"ITANIUM",
"ITANIUM2",
"5X86",
"K6",
"ATHLON",
"DURON",
"OPTERON",
"BARCELONA",
"SHANGHAI",
"ISTANBUL",
"CYRIX5X86",
"CYRIXM1",
"CYRIXM2",
"NEXGENNX586",
"CENTAURC6",
"RISEMP6",
"SYS55X",
"TM3X00",
"NSGEODE",
"VIAC3",
"NANO",
"SANDYBRIDGE",
"BOBCAT",
"BULLDOZER",
"PILEDRIVER",
"HASWELL",
"STEAMROLLER",
"EXCAVATOR",
"ZEN",
};
static char *lowercpuname[] = {
"unknown",
"intel_unknown",
"umc_unknown",
"amd_unknown",
"cyrix_unknown",
"nexgen_unknown",
"centaur_unknown",
"rise_unknown",
"sis_unknown",
"transmeta_unknown",
"nsc_unknown",
"80386",
"80486",
"pentium",
"pentium2",
"pentium3",
"pentiumm",
"pentium4",
"core2",
"penryn",
"dunnington",
"nehalem",
"atom",
"itanium",
"itanium2",
"5x86",
"k6",
"athlon",
"duron",
"opteron",
"barcelona",
"shanghai",
"istanbul",
"cyrix5x86",
"cyrixm1",
"cyrixm2",
"nexgennx586",
"centaurc6",
"risemp6",
"sys55x",
"tms3x00",
"nsgeode",
"nano",
"sandybridge",
"bobcat",
"bulldozer",
"piledriver",
"haswell",
"steamroller",
"excavator",
"zen",
};
static char *corename[] = {
"UNKOWN",
"80486",
"P5",
"P6",
"KATMAI",
"COPPERMINE",
"NORTHWOOD",
"PRESCOTT",
"BANIAS",
"ATHLON",
"OPTERON",
"BARCELONA",
"VIAC3",
"YONAH",
"CORE2",
"PENRYN",
"DUNNINGTON",
"NEHALEM",
"ATOM",
"NANO",
"SANDYBRIDGE",
"BOBCAT",
"BULLDOZER",
"PILEDRIVER",
"HASWELL",
"STEAMROLLER",
"EXCAVATOR",
"ZEN",
};
static char *corename_lower[] = {
"unknown",
"80486",
"p5",
"p6",
"katmai",
"coppermine",
"northwood",
"prescott",
"banias",
"athlon",
"opteron",
"barcelona",
"viac3",
"yonah",
"core2",
"penryn",
"dunnington",
"nehalem",
"atom",
"nano",
"sandybridge",
"bobcat",
"bulldozer",
"piledriver",
"haswell",
"steamroller",
"excavator",
"zen",
};
char *get_cpunamechar(void){
return cpuname[get_cpuname()];
}
char *get_lower_cpunamechar(void){
return lowercpuname[get_cpuname()];
}
int get_coretype(void){
int family, exfamily, model, exmodel, vendor;
if (!have_cpuid()) return CORE_80486;
family = get_cputype(GET_FAMILY);
exfamily = get_cputype(GET_EXFAMILY);
model = get_cputype(GET_MODEL);
exmodel = get_cputype(GET_EXMODEL);
vendor = get_vendor();
if (vendor == VENDOR_INTEL){
switch (family) {
case 4:
return CORE_80486;
case 5:
return CORE_P5;
case 6:
switch (exmodel) {
case 0:
switch (model) {
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
return CORE_P6;
case 7:
return CORE_KATMAI;
case 8:
case 10:
case 11:
return CORE_COPPERMINE;
case 9:
case 13:
case 14:
return CORE_BANIAS;
case 15:
return CORE_CORE2;
}
break;
case 1:
switch (model) {
case 6:
return CORE_CORE2;
case 7:
return CORE_PENRYN;
case 10:
case 11:
case 14:
case 15:
return CORE_NEHALEM;
case 12:
return CORE_ATOM;
case 13:
return CORE_DUNNINGTON;
}
break;
case 2:
switch (model) {
case 5:
//Intel Core (Clarkdale) / Core (Arrandale)
// Pentium (Clarkdale) / Pentium Mobile (Arrandale)
// Xeon (Clarkdale), 32nm
return CORE_NEHALEM;
case 10:
//Intel Core i5-2000 /i7-2000 (Sandy Bridge)
if(support_avx())
return CORE_SANDYBRIDGE;
else
return CORE_NEHALEM; //OS doesn't support AVX
case 12:
//Xeon Processor 5600 (Westmere-EP)
return CORE_NEHALEM;
case 13:
//Intel Core i7-3000 / Xeon E5 (Sandy Bridge)
if(support_avx())
return CORE_SANDYBRIDGE;
else
return CORE_NEHALEM; //OS doesn't support AVX
case 14:
//Xeon E7540
case 15:
//Xeon Processor E7 (Westmere-EX)
return CORE_NEHALEM;
}
break;
case 3:
switch (model) {
case 10:
case 14:
if(support_avx())
return CORE_SANDYBRIDGE;
else
return CORE_NEHALEM; //OS doesn't support AVX
case 12:
case 15:
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 13:
//broadwell
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
}
break;
case 4:
switch (model) {
case 5:
case 6:
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 7:
case 15:
//broadwell
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 14:
//Skylake
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 12:
// Braswell
case 13:
// Avoton
return CORE_NEHALEM;
}
break;
case 5:
switch (model) {
case 6:
//broadwell
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 5:
case 14:
// Skylake
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 7:
// Phi Knights Landing
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
case 12:
// Apollo Lake
return CORE_NEHALEM;
}
break;
case 9:
case 8:
if (model == 14) { // Kaby Lake
if(support_avx())
#ifndef NO_AVX2
return CORE_HASWELL;
#else
return CORE_SANDYBRIDGE;
#endif
else
return CORE_NEHALEM;
}
}
break;
case 15:
if (model <= 0x2) return CORE_NORTHWOOD;
else return CORE_PRESCOTT;
}
}
if (vendor == VENDOR_AMD){
if (family <= 0x5) return CORE_80486;
if (family <= 0xe) return CORE_ATHLON;
if (family == 0xf){
if ((exfamily == 0) || (exfamily == 2)) return CORE_OPTERON;
else if (exfamily == 5) return CORE_BOBCAT;
else if (exfamily == 6) {
switch (model) {
case 1:
//AMD Bulldozer Opteron 6200 / Opteron 4200 / AMD FX-Series
if(support_avx())
return CORE_BULLDOZER;
else
return CORE_BARCELONA; //OS don't support AVX.
case 2: //AMD Piledriver
case 3: //AMD Richland
if(support_avx())
return CORE_PILEDRIVER;
else
return CORE_BARCELONA; //OS don't support AVX.
case 5: // New EXCAVATOR
if(support_avx())
return CORE_EXCAVATOR;
else
return CORE_BARCELONA; //OS don't support AVX.
case 0:
case 8:
switch(exmodel){
case 1: //AMD Trinity
if(support_avx())
return CORE_PILEDRIVER;
else
return CORE_BARCELONA; //OS don't support AVX.
case 3:
if(support_avx())
return CORE_STEAMROLLER;
else
return CORE_BARCELONA; //OS don't support AVX.
case 6:
if(support_avx())
return CORE_EXCAVATOR;
else
return CORE_BARCELONA; //OS don't support AVX.
}
break;
}
} else if (exfamily == 8) {
switch (model) {
case 1:
// AMD Ryzen
if(support_avx())
#ifndef NO_AVX2
return CORE_ZEN;
#else
return CORE_SANDYBRIDGE; // Zen is closer in architecture to Sandy Bridge than to Excavator
#endif
else
return CORE_BARCELONA;
}
} else {
return CORE_BARCELONA;
}
}
}
if (vendor == VENDOR_CENTAUR) {
switch (family) {
case 0x6:
return CORE_NANO;
break;
}
return CORE_VIAC3;
}
return CORE_UNKNOWN;
}
void get_cpuconfig(void){
cache_info_t info;
int features;
printf("#define %s\n", cpuname[get_cpuname()]);
if (get_coretype() != CORE_P5) {
get_cacheinfo(CACHE_INFO_L1_I, &info);
if (info.size > 0) {
printf("#define L1_CODE_SIZE %d\n", info.size * 1024);
printf("#define L1_CODE_ASSOCIATIVE %d\n", info.associative);
printf("#define L1_CODE_LINESIZE %d\n", info.linesize);
}
get_cacheinfo(CACHE_INFO_L1_D, &info);
if (info.size > 0) {
printf("#define L1_DATA_SIZE %d\n", info.size * 1024);
printf("#define L1_DATA_ASSOCIATIVE %d\n", info.associative);
printf("#define L1_DATA_LINESIZE %d\n", info.linesize);
}
get_cacheinfo(CACHE_INFO_L2, &info);
if (info.size > 0) {
printf("#define L2_SIZE %d\n", info.size * 1024);
printf("#define L2_ASSOCIATIVE %d\n", info.associative);
printf("#define L2_LINESIZE %d\n", info.linesize);
} else {
//fall back for some virtual machines.
printf("#define L2_SIZE 1048576\n");
printf("#define L2_ASSOCIATIVE 6\n");
printf("#define L2_LINESIZE 64\n");
}
get_cacheinfo(CACHE_INFO_L3, &info);
if (info.size > 0) {
printf("#define L3_SIZE %d\n", info.size * 1024);
printf("#define L3_ASSOCIATIVE %d\n", info.associative);
printf("#define L3_LINESIZE %d\n", info.linesize);
}
get_cacheinfo(CACHE_INFO_L1_ITB, &info);
if (info.size > 0) {
printf("#define ITB_SIZE %d\n", info.size * 1024);
printf("#define ITB_ASSOCIATIVE %d\n", info.associative);
printf("#define ITB_ENTRIES %d\n", info.linesize);
}
get_cacheinfo(CACHE_INFO_L1_DTB, &info);
if (info.size > 0) {
printf("#define DTB_SIZE %d\n", info.size * 1024);
printf("#define DTB_ASSOCIATIVE %d\n", info.associative);
printf("#define DTB_DEFAULT_ENTRIES %d\n", info.linesize);
} else {
//fall back for some virtual machines.
printf("#define DTB_DEFAULT_ENTRIES 32\n");
}
features = get_cputype(GET_FEATURE);
if (features & HAVE_CMOV ) printf("#define HAVE_CMOV\n");
if (features & HAVE_MMX ) printf("#define HAVE_MMX\n");
if (features & HAVE_SSE ) printf("#define HAVE_SSE\n");
if (features & HAVE_SSE2 ) printf("#define HAVE_SSE2\n");
if (features & HAVE_SSE3 ) printf("#define HAVE_SSE3\n");
if (features & HAVE_SSSE3) printf("#define HAVE_SSSE3\n");
if (features & HAVE_SSE4_1) printf("#define HAVE_SSE4_1\n");
if (features & HAVE_SSE4_2) printf("#define HAVE_SSE4_2\n");
if (features & HAVE_SSE4A) printf("#define HAVE_SSE4A\n");
if (features & HAVE_SSE5 ) printf("#define HAVE_SSSE5\n");
if (features & HAVE_AVX ) printf("#define HAVE_AVX\n");
if (features & HAVE_3DNOWEX) printf("#define HAVE_3DNOWEX\n");
if (features & HAVE_3DNOW) printf("#define HAVE_3DNOW\n");
if (features & HAVE_FMA4 ) printf("#define HAVE_FMA4\n");
if (features & HAVE_FMA3 ) printf("#define HAVE_FMA3\n");
if (features & HAVE_CFLUSH) printf("#define HAVE_CFLUSH\n");
if (features & HAVE_HIT) printf("#define HAVE_HIT 1\n");
if (features & HAVE_MISALIGNSSE) printf("#define HAVE_MISALIGNSSE\n");
if (features & HAVE_128BITFPU) printf("#define HAVE_128BITFPU\n");
if (features & HAVE_FASTMOVU) printf("#define HAVE_FASTMOVU\n");
printf("#define NUM_SHAREDCACHE %d\n", get_cputype(GET_NUMSHARE) + 1);
printf("#define NUM_CORES %d\n", get_cputype(GET_NUMCORES) + 1);
features = get_coretype();
if (features > 0) printf("#define CORE_%s\n", corename[features]);
} else {
printf("#define DTB_DEFAULT_ENTRIES 16\n");
printf("#define L1_CODE_SIZE 8192\n");
printf("#define L1_DATA_SIZE 8192\n");
printf("#define L2_SIZE 0\n");
}
}
void get_architecture(void){
#ifndef __64BIT__
printf("X86");
#else
printf("X86_64");
#endif
}
void get_subarchitecture(void){
printf("%s", get_cpunamechar());
}
void get_subdirname(void){
#ifndef __64BIT__
printf("x86");
#else
printf("x86_64");
#endif
}
char *get_corename(void){
return corename[get_coretype()];
}
void get_libname(void){
printf("%s", corename_lower[get_coretype()]);
}
/* This if for Makefile */
void get_sse(void){
int features;
features = get_cputype(GET_FEATURE);
if (features & HAVE_MMX ) printf("HAVE_MMX=1\n");
if (features & HAVE_SSE ) printf("HAVE_SSE=1\n");
if (features & HAVE_SSE2 ) printf("HAVE_SSE2=1\n");
if (features & HAVE_SSE3 ) printf("HAVE_SSE3=1\n");
if (features & HAVE_SSSE3) printf("HAVE_SSSE3=1\n");
if (features & HAVE_SSE4_1) printf("HAVE_SSE4_1=1\n");
if (features & HAVE_SSE4_2) printf("HAVE_SSE4_2=1\n");
if (features & HAVE_SSE4A) printf("HAVE_SSE4A=1\n");
if (features & HAVE_SSE5 ) printf("HAVE_SSSE5=1\n");
if (features & HAVE_AVX ) printf("HAVE_AVX=1\n");
if (features & HAVE_3DNOWEX) printf("HAVE_3DNOWEX=1\n");
if (features & HAVE_3DNOW) printf("HAVE_3DNOW=1\n");
if (features & HAVE_FMA4 ) printf("HAVE_FMA4=1\n");
if (features & HAVE_FMA3 ) printf("HAVE_FMA3=1\n");
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。