2 Star 0 Fork 0

testorigind/ssd_resnet34

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
eval.py 5.46 KB
一键复制 编辑 原始数据 按行查看 历史
嘎嘎皮5.0 提交于 2021-08-27 10:01 . updata scripts
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for SSD"""
import os
import ast
import argparse
import time
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.ssd import SSD300, SsdInferWithDecoder, ssd_mobilenet_v2, ssd_mobilenet_v1_fpn, ssd_resnet50_fpn, ssd_vgg16, ssd_resnet34
from src.dataset import create_ssd_dataset, create_mindrecord
from src.config import config
from src.eval_utils import metrics
from src.box_utils import default_boxes
def ssd_eval(dataset_path, ckpt_path, anno_json):
"""SSD evaluation."""
batch_size = 1
ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1,
is_training=False, use_multiprocessing=False)
if config.model == "ssd300":
net = SSD300(ssd_mobilenet_v2(), config, is_training=False)
elif config.model == "ssd_vgg16":
net = ssd_vgg16(config=config)
elif config.model == "ssd_mobilenet_v1_fpn":
net = ssd_mobilenet_v1_fpn(config=config)
elif config.model == "ssd_resnet50_fpn":
net = ssd_resnet50_fpn(config=config)
elif config.model == "ssd_resnet34":
net = ssd_resnet34(config=config)
else:
raise ValueError(f'config.model: {config.model} is not supported')
net = SsdInferWithDecoder(net, Tensor(default_boxes), config)
print("Load Checkpoint!")
param_dict = load_checkpoint(ckpt_path)
net.init_parameters_data()
load_param_into_net(net, param_dict)
net.set_train(False)
i = batch_size
total = ds.get_dataset_size() * batch_size
start = time.time()
pred_data = []
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1):
img_id = data['img_id']
img_np = data['image']
image_shape = data['image_shape']
output = net(Tensor(img_np))
for batch_idx in range(img_np.shape[0]):
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],
"img_id": int(np.squeeze(img_id[batch_idx])),
"image_shape": image_shape[batch_idx]})
percent = round(i / total * 100., 2)
print(f' {str(percent)} [{i}/{total}]', end='\r')
i += batch_size
cost_time = int((time.time() - start) * 1000)
print(f' 100% [{total}/{total}] cost {cost_time} ms')
mAP = metrics(pred_data, anno_json)
print("\n========================================\n")
print(f"mAP: {mAP}")
def get_eval_args():
parser = argparse.ArgumentParser(description='SSD evaluation')
parser.add_argument("--data_url",type=str)
parser.add_argument("--train_url",type=str, default = "")
parser.add_argument("--mindrecord",type=str)
parser.add_argument("--run_online",type=ast.literal_eval, default = False)
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"),
help="run platform, support Ascend ,GPU and CPU.")
return parser.parse_args()
if __name__ == '__main__':
args_opt = get_eval_args()
if args_opt.run_online:
import moxing as mox
config.checkpoint_path= "/cache/checkpoint_path/checkpoint.ckpt"
config.coco_root = "/cache/data_url"
config.mindrecord_dir = "/cache/mindrecord_url"
mox.file.copy_parallel(args_opt.data_url, config.coco_root)
mox.file.copy_parallel(args_opt.checkpoint_path, config.checkpoint_path)
else:
config.checkpoint_path = args_opt.checkpoint_path
config.coco_root = args_opt.data_url
config.mindrecord_dir = args_opt.mindrecord
if args_opt.dataset == "coco":
json_path = os.path.join(config.coco_root, config.instances_set.format(config.val_data_type))
elif args_opt.dataset == "voc":
json_path = os.path.join(config.voc_root, config.voc_json)
else:
raise ValueError('SSD eval only support dataset mode is coco and voc!')
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
mindrecord_file = create_mindrecord(args_opt.dataset, "ssd_eval.mindrecord", False)
if args_opt.run_online:
import moxing as mox
mox.file.copy_parallel(mindrecord_file, args_opt.mindrecord)
print("Start Eval!")
ssd_eval(mindrecord_file, config.checkpoint_path, json_path)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/testorigind/ssd_resnet34.git
git@gitee.com:testorigind/ssd_resnet34.git
testorigind
ssd_resnet34
ssd_resnet34
master

搜索帮助