1 Star 1 Fork 0

文杰/3DDFA

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
main.py 9.29 KB
一键复制 编辑 原始数据 按行查看 历史
cleardusk 提交于 2019-01-26 21:48 . Update
#!/usr/bin/env python3
# coding: utf-8
__author__ = 'cleardusk'
"""
The pipeline of 3DDFA prediction: given one image, predict the 3d face vertices, 68 landmarks and visualization.
[todo]
1. CPU optimization: https://pmchojnacki.wordpress.com/2018/10/07/slow-pytorch-cpu-performance
"""
import torch
import torchvision.transforms as transforms
import mobilenet_v1
import numpy as np
import cv2
import dlib
from utils.ddfa import ToTensorGjz, NormalizeGjz, str2bool
import scipy.io as sio
from utils.inference import get_suffix, parse_roi_box_from_landmark, crop_img, predict_68pts, dump_to_ply, dump_vertex, \
draw_landmarks, predict_dense, parse_roi_box_from_bbox, get_colors, write_obj_with_colors
from utils.cv_plot import plot_pose_box
from utils.estimate_pose import parse_pose
from utils.render import get_depths_image, cget_depths_image, cpncc
from utils.paf import gen_img_paf
import argparse
import torch.backends.cudnn as cudnn
STD_SIZE = 120
def main(args):
# 1. load pre-tained model
checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
arch = 'mobilenet_1'
checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
model = getattr(mobilenet_v1, arch)(num_classes=62) # 62 = 12(pose) + 40(shape) +10(expression)
model_dict = model.state_dict()
# because the model is trained by multiple gpus, prefix module should be removed
for k in checkpoint.keys():
model_dict[k.replace('module.', '')] = checkpoint[k]
model.load_state_dict(model_dict)
if args.mode == 'gpu':
cudnn.benchmark = True
model = model.cuda()
model.eval()
# 2. load dlib model for face detection and landmark used for face cropping
if args.dlib_landmark:
dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
face_regressor = dlib.shape_predictor(dlib_landmark_model)
if args.dlib_bbox:
face_detector = dlib.get_frontal_face_detector()
# 3. forward
tri = sio.loadmat('visualize/tri.mat')['tri']
transform = transforms.Compose([ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
for img_fp in args.files:
img_ori = cv2.imread(img_fp)
if args.dlib_bbox:
rects = face_detector(img_ori, 1)
else:
rects = []
if len(rects) == 0:
rects = dlib.rectangles()
rect_fp = img_fp + '.bbox'
lines = open(rect_fp).read().strip().split('\n')[1:]
for l in lines:
l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
rect = dlib.rectangle(l, r, t, b)
rects.append(rect)
pts_res = []
Ps = [] # Camera matrix collection
poses = [] # pose collection, [todo: validate it]
vertices_lst = [] # store multiple face vertices
ind = 0
suffix = get_suffix(img_fp)
for rect in rects:
# whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
if args.dlib_landmark:
# - use landmark for cropping
pts = face_regressor(img_ori, rect).parts()
pts = np.array([[pt.x, pt.y] for pt in pts]).T
roi_box = parse_roi_box_from_landmark(pts)
else:
# - use detected face bbox
bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
roi_box = parse_roi_box_from_bbox(bbox)
img = crop_img(img_ori, roi_box)
# forward: one step
img = cv2.resize(img, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR)
input = transform(img).unsqueeze(0)
with torch.no_grad():
if args.mode == 'gpu':
input = input.cuda()
param = model(input)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
# 68 pts
pts68 = predict_68pts(param, roi_box)
# two-step for more accurate bbox to crop face
if args.bbox_init == 'two':
roi_box = parse_roi_box_from_landmark(pts68)
img_step2 = crop_img(img_ori, roi_box)
img_step2 = cv2.resize(img_step2, dsize=(STD_SIZE, STD_SIZE), interpolation=cv2.INTER_LINEAR)
input = transform(img_step2).unsqueeze(0)
with torch.no_grad():
if args.mode == 'gpu':
input = input.cuda()
param = model(input)
param = param.squeeze().cpu().numpy().flatten().astype(np.float32)
pts68 = predict_68pts(param, roi_box)
pts_res.append(pts68)
P, pose = parse_pose(param)
Ps.append(P)
poses.append(pose)
# dense face 3d vertices
if args.dump_ply or args.dump_vertex or args.dump_depth or args.dump_pncc or args.dump_obj:
vertices = predict_dense(param, roi_box)
vertices_lst.append(vertices)
if args.dump_ply:
dump_to_ply(vertices, tri, '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind))
if args.dump_vertex:
dump_vertex(vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''), ind))
if args.dump_pts:
wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind)
np.savetxt(wfp, pts68, fmt='%.3f')
print('Save 68 3d landmarks to {}'.format(wfp))
if args.dump_roi_box:
wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind)
np.savetxt(wfp, roi_box, fmt='%.3f')
print('Save roi box to {}'.format(wfp))
if args.dump_paf:
wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''), ind)
wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''), ind)
paf_feature = gen_img_paf(img_crop=img, param=param, kernel_size=args.paf_size)
cv2.imwrite(wfp_paf, paf_feature)
cv2.imwrite(wfp_crop, img)
print('Dump to {} and {}'.format(wfp_crop, wfp_paf))
if args.dump_obj:
wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
colors = get_colors(img_ori, vertices)
write_obj_with_colors(wfp, vertices, tri, colors)
print('Dump obj with sampled texture to {}'.format(wfp))
ind += 1
if args.dump_pose:
# P, pose = parse_pose(param) # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
img_pose = plot_pose_box(img_ori, Ps, pts_res)
wfp = img_fp.replace(suffix, '_pose.jpg')
cv2.imwrite(wfp, img_pose)
print('Dump to {}'.format(wfp))
if args.dump_depth:
wfp = img_fp.replace(suffix, '_depth.png')
# depths_img = get_depths_image(img_ori, vertices_lst, tri-1) # python version
depths_img = cget_depths_image(img_ori, vertices_lst, tri - 1) # cython version
cv2.imwrite(wfp, depths_img)
print('Dump to {}'.format(wfp))
if args.dump_pncc:
wfp = img_fp.replace(suffix, '_pncc.png')
pncc_feature = cpncc(img_ori, vertices_lst, tri - 1) # cython version
cv2.imwrite(wfp, pncc_feature[:, :, ::-1]) # cv2.imwrite will swap RGB -> BGR
print('Dump to {}'.format(wfp))
if args.dump_res:
draw_landmarks(img_ori, pts_res, wfp=img_fp.replace(suffix, '_3DDFA.jpg'), show_flg=args.show_flg)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='3DDFA inference pipeline')
parser.add_argument('-f', '--files', nargs='+',
help='image files paths fed into network, single or multiple images')
parser.add_argument('-m', '--mode', default='cpu', type=str, help='gpu or cpu mode')
parser.add_argument('--show_flg', default='true', type=str2bool, help='whether show the visualization result')
parser.add_argument('--bbox_init', default='one', type=str,
help='one|two: one-step bbox initialization or two-step')
parser.add_argument('--dump_res', default='true', type=str2bool, help='whether write out the visualization image')
parser.add_argument('--dump_vertex', default='false', type=str2bool,
help='whether write out the dense face vertices to mat')
parser.add_argument('--dump_ply', default='true', type=str2bool)
parser.add_argument('--dump_pts', default='true', type=str2bool)
parser.add_argument('--dump_roi_box', default='false', type=str2bool)
parser.add_argument('--dump_pose', default='true', type=str2bool)
parser.add_argument('--dump_depth', default='true', type=str2bool)
parser.add_argument('--dump_pncc', default='true', type=str2bool)
parser.add_argument('--dump_paf', default='false', type=str2bool)
parser.add_argument('--paf_size', default=3, type=int, help='PAF feature kernel size')
parser.add_argument('--dump_obj', default='true', type=str2bool)
parser.add_argument('--dlib_bbox', default='true', type=str2bool, help='whether use dlib to predict bbox')
parser.add_argument('--dlib_landmark', default='true', type=str2bool,
help='whether use dlib landmark to crop image')
args = parser.parse_args()
main(args)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/swjevergreen/3DDFA.git
git@gitee.com:swjevergreen/3DDFA.git
swjevergreen
3DDFA
3DDFA
master

搜索帮助